

Bachelor of Computer Application

(B.C.A.)

Object Oriented Programming with C++

Semester-iv

Author- Poonam Ponde

SURESH GYAN VIHAR UNIVERSITY

Centre for Distance and Online Education

Mahal, Jagatpura, Jaipur-302025

Published by:

S. B. Prakashan Pvt. Ltd.

WZ-6, Lajwanti Garden, New Delhi: 110046

Tel.: (011) 28520627 | Ph.: 9205476295

Email: info@sbprakashan.com | Web.: www.sbprakashan.com

© SGVU

All rights reserved.

No part of this book may be reproduced or copied in any form or by any means (graph-
ic, electronic or mechanical, including photocopying, recording, taping, or information
retrieval system) or reproduced on any disc, tape, perforated media or other information
storage device, etc., without the written permission of the publishers.

Every effort has been made to avoid errors or omissions in the publication. In spite of this,
some errors might have crept in. Any mistake, error or discrepancy noted may be brought
to our notice and it shall be taken care of in the next edition. It is notified that neither the
publishers nor the author or seller will be responsible for any damage or loss of any kind,
in any manner, therefrom.

For binding mistakes, misprints or for missing pages, etc., the publishers’ liability is lim-
ited to replacement within one month of purchase by similar edition. All expenses in this
connection are to be borne by the purchaser.

Designed & Graphic by : S. B. Prakashan Pvt. Ltd.

Printed at :

Dr (Prof.) T.K. Jain
Director, CDOE, SGVU

Dr. Dev Brat Gupta
Associate Professor (SILS) & Academic
Head, CDOE, SGVU

Ms. Hemlalata Dharendra
Assistant Professor, CDOE, SGVU

Ms. Kapila Bishnoi
Assistant Professor, CDOE, SGVU

Dr. Manish Dwivedi
Associate Professor & Dy, Director,
CDOE, SGVU

Mr. Manvendra Narayan Mishra
Assistant Professor (Deptt. of Mathematics)
SGVU

Ms. Shreya Mathur
Assistant Professor, CDOE, SGVU

Mr. Ashphaq Ahmad
Assistant Professor, CDOE, SGVU

EDITORIAL BOARD (CDOE, SGVU)

Syllabus

Object Oriented Programming

Learning Objective

- Provide flexible and powerful abstraction

- Allow programmers to think in terms of the structure of the problem rather than in terms

of the structure of the computer.

- Decompose the problem into a set of objects

- Objects interact with each other to solve the problem

- create new type of objects to model elements from the problem space

Unit 1

Introduction to object oriented programming, user defined types, structures, unions,

polymorphism, encapsulation. Getting started with C++ syntax, data-type, variables, strings,

functions, default values in functions, recursion, namespaces, operators, flow control, arrays and

pointers.

Unit II

Abstraction mechanism: Classes, private, public, constructors, destructors, member data, member

functions, inline function, friend functions, static members, and references. Inheritance: Class

hierarchy, derived classes, single inheritance, multiple, multilevel, hybrid inheritance, role of

virtual base class, constructor and destructor execution, base initialization using derived class

constructors.

Unit III

Polymorphism: Binding, Static binding, Dynamic binding, Static polymorphism: Function

Overloading, Ambiguity in function overloading, Dynamic polymorphism: Base class pointer,

object slicing, late binding, method overriding with virtual functions, pure virtual functions,

abstract classes. Operator Overloading: This pointer, applications of this pointer, Operator

function, member and non member operator function, operator overloading, I/O operators.

Exception handling: Try, throw, and catch, exceptions and derived classes, function exception

declaration, unexpected exceptions, exception when handling exceptions, resource capture and

release.

Unit IV

Dynamic memory management, new and delete operators, object copying, copy constructor,

assignment operator, virtual destructor. Template: template classes, template functions. Standard

Template Library: Fundamental idea about string, iterators, hashes, iostreams and other types.

Namespaces: user defined namespaces, namespaces provided by library. Object Oriented Design,

design and programming, role of classes.

References

- Object Oriented Programming with C++ by E. Balagurusamy, McGraw-Hill

Education (India)

- ANSI and Turbo C++ by Ashoke N. Kamthane, Pearson Education Reference Books:

1. Big C++ - Wiley India

- C++: The Complete Reference- Schildt, McGraw-Hill Education (India)

- C++ and Object Oriented Programming – Jana, PHI Learning.

- Object Oriented Programming with C++ - Rajiv Sahay, Oxford

- Mastering C++ - Venugopal, McGraw-Hill Education (India)

Gontents
1. Principle of OOP's 14

1. Introduction..1-1
2. What is Object Oriented Development?:......... i-1
3. Object driented Methodology1-2
4. Overview of Procedure Oriented Programming 1-3
5. What ls Object Oriented Programming?...................1-4
6. Object Oriented Languages...1-12

2. Basics of G++ 14
1. A Brief History of C and C++2-1
2. Differences between C and C++2-z
3. Features of C++..........2-3
4. Advantages and Disadvantages of C++............,.2-3
5. Applications of C++2-4
6. Writing and Executing a'C++'Program.......2-4
7. Program Structure and Rules 2-6
8. Sample C++ Program2-z
9. Comments2-g
10. Return Type of MAIN$2-9
11. Namespace std................2-1f
12. Header Fi1e...............2-i0
13. Output Statement (COUT)........2-11
14. Input Statement (ClN)........ 2-13

34Expression
1. Introduction.. 3-1

2. C++ Tokens,3-2
3. Data Types 3-B
4. Declaration of Variables,...... ...3-14
5. Initialization of Variables.. 3-16
6. Reference Variables..... 3-16
7. Operators3-18
8. Type Cast Operator......3-24
9. Memory Management Operators.,...3-25
10. Expression,..3-27
11. Statement....3-28
12. Symbolic Constant....... 3-29
13. Type Compatibility...........3-30
Solved Programs3-30
Functions in C++ 22
1. Introduction.. 4-1
2. Passing lnformation - Parameters .,.........4-l
3. Default Arguments... 4-10
4. Constant Arguments...4-i1
5. Function Overloading 4-11

Obfect Orlented Programmlng wlth C++ rlo L{rd

4.

5.

6.

7.

8.

ObJect Orlented Programmlng wlth C++ o2o |r44q

5. HierarchicalInheritance... g_19

6. Hybrid Inheritance8_21
7. Container Classes g_23

L VirtualBase Classes g-25
' 9. Constructors in Derived Classes;.................. g_2g

10. Destructors in Derived Classes g-31

11. Nesting of Classes.... j............ g_33

12. Pointers to Derived Classes g_39

13. Virtual Functions..... g_41

14. Pure Virtual Functions, g_43

15. Abstract Classes........ g-45
Solved Programs9-47

9. The G++ f/O System Basics 20
1. Introduction.. g_1

2. C++ Stream9_.1
3. C++ Stream Classesg-2
4. Unformatted l/O Operations,.........9-3
5. Formatted l/O Operations.........,.........g_7
6. Manipulators .. 9_11
Solved Programs 9-16

10. Working with Files 30
1. lntroduction.., 10_1
2. Creating a Stream10_2
3. Opening a Fi1e............ 10_3
4. Closing a Fi1e............ 10_5
5. Checking for Failure with File Commands,............. 10-5
6. Detecting the End-ofiFi1e........,......... 10_6
7. File Pointers and their Manipulation 10_g
8. Reading / Writing a Character from a File 10_9
L write0 and read0 Functions 10_11
10. Buffers and Synchronization..........10-12
11. Other Functions.................10_12
12. Random Access File Processin9...,............. 10-15
13. Updating a File: Random Access 10_16
14. Command Line Arguments...,............................:...... 10-20
Solved Programs ..10_22

11. Tempfate 26
1. Introduction..1,1-1
2. Generic Functions;..11_2
3. A Function with Two Generic Data Types114
4. Explicitly Overloading a Generic Function.,..... 11-5
5. Overloading Function Templates....11-7
6. Using Standard Parameters with Template Functions.. 11_g
7 . Generic Functions Restrictions, , 1 1 _g

8. Generic Classes11_11
9. An Example with Two Generic Data Types

Obfect Orlented Programmlng with G++ o 3.

12.

10. Using Non-type Arguments with Generic C1ass........ '........'....'...... 11'15

11. Using Default Arguments with Template Classes..... .'..'.'.........-.... '1 1'16

12. Template Parameters.. '.' 11'18

13. Template Specializations........,.......... .. 11-19

14. TheTypenameand ExportKeywords .11'21

Sofved Programs ..11'22

Exception Handling 20

1. lntroduction..'..'............12-1

2. Exception Mechanism '.".'12-2
3. Using Multiple Gatch Statements......,....... ..'...'..'........ 12'9

4. Catch-All Exception Handler........ '.'.'...12-11
5. Nesting Try-catch B1ocks.......... "..'...'.' 12-12

6. Exception Specifications................... "' 12-13

7. Unexpected Exception..... .'..'.".'."..'.." 12-14

8. Throwing an Exception from Handler ..12-16

9. Uncaught Exception '.'--.- 12-17

Solved Programs '.12'19
Introduction to Standard Template Library 32

1. lntroduction, '....".'...'....'...' 13-1

2. The STL Programming Model,.' 13-2

3. Containers... ..'.""'.'.."...'...13'3

4. Algorithms ..i"...........'..... ...'.!,i..'....ir.!r. - 13-22

5. fterators13-25

6. Function Objects.........13-26

7. Allocators.....'.......'.'. 13-28

8. Adaptors ..-.13'28

Solved Programs ..13'30

14. Namespace 10

1. lntroduction.. .,............,...... 14-1

2. Defining a Namespace ""' 14-2

3. The Standard Namespace.. ".'..."'..."'." 14-4

4. Nested Namespace. '.."....14'6
5. Unnamed Namespace.. '..' 14'8

6. Namespace A1ias............. '.'..'..........'..'.' 14'9

15. New Style Casts and RTTI 14

Oblect Oriented Programming with C++ o 4o l!r!g

13.

Princi Of OOP'S

l. lntroduction
The term "Object orienled" means organizing software as a collection of discrete objects that

incorporate both data structure and behaviour. This is in conffast to conventional programming in
which the data structure and behaviour are loosely connected. There is some dispute about exactly

what characteristics are required by an object oriented approach, but they generally include four

aspects: identity, classification, polymorphism and inheritance.

2, What is Object Oriented Development?
Object oriented development is fundamentally a new way of thinking and not a programming

technique. Its greatest benefits come from helping specifiers, developers and customers, express

abstract concepts clearly and let them communicate among each other. It can serve as a medium for
specification, analysis, documentation and interfacing as well as for programming. Even as a
programming tool, it can have various targets, including conventional programming languages and

databases as well as object oriented languages. The essence of object oriented development is the

identification and organization of application-domain concepts, rather than their final representation

in a programming language, object oriented or not.

1.1
()"

ur$0rl

Principle of OOP's
O"

tfl$0i

3. Object Oriented Methodology
We present a methodology for object oriented development and a graphical notation for

representing object oriented concepts.

The methodology consists of building a model of an application domain and then adding
implementation details to it during the design of a system. We call this approach as the Object
Modeling Technique (Olvft).

The methodology has the following stages:

i. Analysis: The purpose of the analysis is to state and understand the problem and the
application domain so that a correct design can be constructed. A good analysis captures the
essential features of the problem without introducing implementation artifacts that
prematurely restrict design decisions.

Analysis begins with a problem statement generated by clients and possibly the developers.
The analyst builds a model of the real-world situation showing its impotant properties, The
analyst must work with the requestor to understand the problem because the problem
statements are rarely complete or correct. The analysis model is a concise, precise abstraction
of what the desired system must do, not how it will be done, The objects in the model should
be application-domain concepts and not computer implementation concepts such as data
structures. A good model can be understood and uiticized by application experts who are not
programmers. The analysis model should not contain any implementation decisions. Hence,
analysis covers the detailed study of the requirements of both user and the software like what
are the inputs to the system and what are the outputs expected?

ii. System Design: After analyzing a problem, you must decide how to approach the design.
System design is the high-level strategy for solving the problem and building a solution.
System design includes decisions about the organization of the system into subsystems, the
allocation of subsystems to hardware and software components and major conceptual and
policy decision that form the framework for detailed design.
During design, decisions are made about how the problem will be solved, first at a high level,
then at increasingly detailed levels.

iii. Object Design: The object design phase determines the full definitions of the classes and
associations used in the implementation, as well as the interfaces and algorithms of the
methods used to implement operations. The object design phase adds internal objects for
implementation and optimizes data structures and algorithms.
Object oriented design tums the s/w requirements into specification for objects and derived
class hierarchies from which the objects can be created.

iv. Implementation: The object classes and relationships developed during object design are
finally translated into a particular programming language, database or hardware
implementation. Programming should be a relatively minor and mechanical part of the
development cycle, because all of the hard decisions should be made during design. During
implementation, it is important to follow good software engineering practice so that
traceability to the design is straight forward and the implemented system remains flexible and
extensible. For example: the window class would be coded in a programming language, using
calls to the underlying graphics system on the workstation.

OOP with C++

Or
sr3|0t OOP with C++ Principle ol OOP's

Object oriented concepts can be applied throughout the system development life cycle from
analysis through design to implementation. The same classes can be canied from stage to stage
without a change of notation, although they gain additional implementation details in the later stages.
Although the analysis view and the implementation view of window arb both correct, they serve
different purposes and represent a different level of abstraction.

Some classes are not part of analysis but are infroduced as part of the design or implementation.
For example: data structures such as trees, hash tables and linked lists are rarely present in the real
world and they are introduced to support particular algorithms during design. Such data structure
objects are used to implement real-world objects within a computer and do not derive their properties
directly from the real world.

4, Overview of Procedure Oriented Programming
Conventional programming, using high-level languages such as COBOL, FORTRON and C is

commonly known as Procedure Oriented Programming (POP). Using the procedure oriented
approach, the programmer views a problem as a sequence of things to do. The programmer organizes
the related data items and write the necessary functions (procedures) to manipulate the data and the
process, complete the sequence of tasks that solve the problem. The primary focus is on the
functions. A typical program structure for procedural programming is as shown in the following
figure. The technique of hierarchical decomposition has been used to specify the tasks to be
completed for solving a problem.

Flgure 1.1 : Typical struclure of procedure orlented programs

For example: Consider a payroll system where employee pay-slip is to be generated. This can be
shown in a diagrammatic form as follows:

ffi Principle of OOP's
O"

ut3t0i

From the above diagram, Payroll Program is the main program and AcceptQ, Calculate0,
Display0 are the functions.

Accept} : This function can be used to accept the employee details.

Calculate):This function can be'used for calculating the salary and the deductions.

Display}: This function can be used for displaying the employee pay-slip.

Procedure oriented programming basically consists of writing a list of instructions or actions for
the computer to follow and organizing these insffuctions into groups known as functions. Normally a

flow chart is used to. organize these actions and represent the flow of control from one action to
another.

In a multi-function program, many important data items are placed as global so that they can be

accessed bv all the functions. Each function mav have its own local data.

OOP with C++

4.1

i.

ii.

iii.

Disadvantages of Procedure Oriented Programming
Global data is more important to an inadvertent change by a function. In a large program, it is
very difficult to identify what data is used by which function. In such case we need to revise
an external data structure, we also need to revise all functions that access the data.

The procedure oriented programming approach does not model real world problems very well.
This is because functions are action-oriented andtio not really corresponds to the elements of
the problem.

The procedure oriented programming fails to eliminate pitfalls such as maintainability,
reasonability, portability, security, integrity, etc.

4.2 Features of Procedure Oriented Programming
Features of Procedure Oriented Programming are as follows:

i. Focus is on the functions.
ii. It follows Top-Down approach (while programming).
iii. Program consists ofdifferent functions.
iv. Most of the functions share global data.

v. Functions transform data from one form to another.

v. Data is not hidden and can be easilv shared.

5. What ls Object Oriented Programming?
Object Oriented Programming (OOP) contains the concepts of hocedure Oriented Programming

and also some added additional concepts. In OOP the main focus is on the data that is to be used

rather than the function. Once the data, which is to be used, is decided then the different functions
that will operate on this data are defined. Thus it follows Bottom-Up approach. OOP allows
decomposition of a problem into a number of entities called as objects and then builds data and

functions around these objects. The organization of data and functions in object oriented programs is
shown inthefigure 1.3.

Or
u3t0i OOP with C++ Pinciple ot OOP's

The data of an object can be accessed only by the functions associated with that object. However
functions of one object can access the functions of other objects.

Oblect 1 Object 2

Note

i. Since the data is hidden it cannot be accessed directly by any outside function.

ii. If you want to access or modify the data of an object then you should know the different
functions, which are associated with those objects.

iii. Objects can pass messages to each other through functions.
For making this idea more clear let us consider the same example of payroll system (discussed in

POP) where employee pay-slip is to be generated.

In POP focus is on the functions but in the OOP focus will be first on the data and then on the
functions which will opera0e on this data. This can be shown as follows:

Communication

Flgure 1.3: Structure ol oblect orlented programmlng

ffi OOP with C++ Principle of OOP's
o,

uFt0i

This
data.

program will consist of different objects and functions through which you can access the

5. I Features of Object Oriented Programming
Features of Object Oriented Programming are as follows:

Focus is on data rather than procedures or functions.

Program consists of different objects.

Data structures are designed to characterize the objects.

In data structure functions that operate on the data of an object are tied together.

Data is hidden and can only be accessed through the object's member functions.
Objects can pass messages to each other through functions.

New data and functions can be easily added whenever necessary.

It follows bottom-up approach.

tiu'jiiffi

may also represent user-

vi.

vii.
viii.

5.2 Basic Concepts of Object Oriented Programming
The following teftns are required to be known when doing object

oriented programming:

i. Object:
An object is an identifiable entity with some characteristics and
behaviour. Each object has a unique identity, some definitive state
or characteristics and some behaviour. Objects are the basic run-
time entities in an object oriented system.

In OOP, the programs consist of different objects. An object can be
thought of as a real life entity, which can represent a person, thing,
place, animal or any item that the program has to handle. They
defined data such as vectors. time and lists.

When an object is mapped into software representations it consists of two parts:

a. Data structure, referred to as attributes.

b. Processes that may change the data structure, calledfunctions or methods.

When a program is executed, the objects interact by sending messages to one another.
For example: If "customer" and "account" are two objects in a program, then the customer
object may send a message to the account object requesting for the bank balance. Each object
contains data and code to manipulate the data. Objects can interact without knowing the
details of each other's data or code. It is sufficient to know the type of message accepted and
the type of response returned by the objects.

o"
0rfroi

il.

OOP with C++ Principle of OOP's

Dffirent systetn can have dffirent objects as discussed below:

a. Data structures like linked lists, stacks, queue, etc.

b. Employee in Payroll System.

c. Item in Inventory System.

d. Customer in Banking System.

e. . Book in Library System etc.

f. GUI elements like Windows, Menus, Icons etc.

g. Various elements in computer games like Cannons, Guns, Animals, etc.

h. Computers in a Network Model.

For example: Consider a library system, which has different objects as 'book' and 'member'
Member object can pass message to book object to request for a book.

OBjECT NAME

FUNCTIONS

Class

A class represents a set ofobjects that share coflrmon characteristics and behavior. Objects are
variables of the type class.

Class is a user defined data types, which consists of data and member functions of an object.
Classes are declared by using the keyword class followed by class name. Objects are instances
of a class, i.e., multiple objects can be created for a class which are of same type. A class is
thus a collection of objects of similar type. It is a blue-print for an object.

For example: Consider a class as snacks for which you want to declare different objects as
wafers, chips, popcorns, etc. This can be declared as follows (in C++ language).

(Keyword) (Class Name)J.l,class Snacks
{

l.
I,
Snacks Wafers, Chips, Popcorns;

Oblects

OOP with C++ Principle of OOP's
Qr

urt|0i

iii. DataEncapsulation

The binding of data and functions into a single unit is called as encapsulation. Data
encapsulation is the most striking feature of a class. The data cannot be accessible to the
outside world and only those functions which are present in the class can access it. These
functions provide the interface between the object's data and proglam. This insulation of the

data from direct access by the program is called as data hiding or information hiding.
Therefore data hiding is a property where the intemal data of an object is hidden from the rest
of the program making it safe from accidental alteration. Data encapsulation and data hiding
are the key terms in the description of OOP. To hide a data we have to put it in a class and

make it private.

Syntax
^1^^^ ^1-^^ ^^-^

{
hri rr:{- a.

variable declaration;
functlon declaration;

public:
variable declaration;
function declaration;

\;
Data hiding is different than security techniques in following manner. Security technique is
used to protect computer database. To provide a security measure user has to provide or give a
password before accessing the database so data is secured from unauthorized users. But on the
other hand data hiding is designed to protect well-intentioned programmers from mistakes.
But still prograrnmers can figure out a way to use private data but they will find it hard to do
so.

Flgure 1.4

o,
u$0tl OOPwith C++ Principle of OOP's

Hero-Honda

lv. Data Abstraction
Abstraction refers to the act of representing essential features without including the
background details or explanations. The process of defining a data type, often called an
Abstract Data Type (ADT), together with the principle of data hiding is called Data
Abstraction. The definition of an ADT involves specifying the internal representation of the
ADT's data as well as the functions to be used by others to manipulate the ADT. Data hiding
ensures that the internal structure of the ADT can be altered without any fear of breaking the
programs that call the functions provided for operations on the ADT. Classes use the concept
of abstraction.
Hence, we can safely say that an abstraction is a named collection of atffibutes and behaviour
relevant to modeling a given entity for some particular purpose. Abstraction is always relative
to the purpose or user.

Abstraction and encapsulation are complementary concepts: abstraction focuses upon the
observable behaviour of an object, while encapsulation focuses upon the implementation that
gives rise to this behaviour.

lnheritance

Inheritance is the ability to derive a new class from an existing one. The child class can be a
sub or super set of the parent. It supports the concept of hierarchical classification. From the
figure given below Vehicle is the base, i.e., parent class, which has its own properties. Two
classes namely Two-wheeler and Four-wheeler are derived from Vehicle class. Kinetic and
Hero-Honda classes are derived from Two-wheeler class while Sanfo and Indica classes are
derived from Four-wheeler class. The principle behind this sort of division is that each derived
class shares cornmon characteristics with the class from which it is derived.

Flgure 1.5

The concept of inheritance provides the idea of reusability, i.e., we can add additional features
to the existing class without modifying it. This is possible by deriving a new class from the
existing one. The new class will have the combined features of both the classes, i.e., of base
class and derived class.
Note that you can add new sub-classes, which will have their own properties or features in
addition to the previous or base class features. Multiple Inheritance is the ability to derive a
new class from more than one parent class.

Y.

ffiffi OOP with C++ Principle of OOP's
Or

eE||l

Yt. Polymorphism (Poly - many and morphism - Form)

Polymorphism is a Greek word. It is used to express the fact that the same message can be sent
to many different objects and interpreted in different ways by each object.
For example: Consider the operation of addition for two numbers, the operation will generate

a sum. If the operands were strings, then the operation would produce a third sfring by
concatenation. The process of making an operator to exhibit different behaviours in different
instances is known as operator overloading.

Following figure illustrates that a single function name can be used to handle different number
and different types of argument. This is something similar to a particular word having several
different meanings depending on the context. Using a single function name to perform
different types of tasks is known asfunction overloading.

Flgure 1.6

ln the above figure 1.6, therc is a multicoloured Ballpen which has different coloured refills
and you can select the desired colour for writing. Depending on what argument is passed, the
write function will get called. Thus you have same function name writeQ which behaves
differently depending on the different types of arguments.

Polymorphism is extensively used in implementation of Inheritance and Virtual functions.

) Types of Polymorphism

Early binding: Choosing a function in normal way, i.e., during compilation time is called as

early binding or static binding or static linkage. During compilation time, the C++ compiler
determines which function is used based on the parameters passed to the function or the
function's retum type. The compiler then substitutes the correct function for each invocation.
Such compiler based substitutions are called as static linkage.

By default, C++ follows early binding. With early binding, one can achieve greater efficiency.
Function calls are faster in this case because all the information necessarv to call the function
are hard coded.

Late binding: Choosing functions during execution time is called as late binding or dynamic
binding or dynamic linkage. Late binding requires some overhead but provides increased
power and flexibility. The late binding is implemented through virtual functions. An object of
a class must be declared either as a pointer to a class or a reference to a class.

o"
ut$otl OOPwith C++ Principle of OOP's

Flgure 1.7

Yii. Message passint

The act of communicating with an object to get something done is called as messaging or
message passing. It consists of invoking a method, supplying that method with the information
it requires, and receiving a reply from the method. Clearly, messaging can be something as

simple as a function call.

An object oriented program consists of a set of objects that communicate with each other. The
process includes the following steps:

a. Creating classes that define objects and their behaviour

b. Creating objects from class definitions and

c. Establishing communication among objects.

Message passing involves specifying the name of the object, the name of the function
(message) and the information to be sent.

For exampla' shape . draw (circl-e) ;

where, shnpe istheobjectname, drawisthemessage andcircle istheinformation.

5.3 Applications of OOP

Applications of OOP are beginning to gain importance in many areas. The most popular
application of object oriented programming, up to now has been in the area of user interface design
such as windows. Hundreds of windowing systems have been developed, using the OOP technique.

OOP has gained popularity in different areas such as object oriented databases where the concept
are related to ORDBMS (Object Relational Database Management System), OODBMS (Object
Oriented Database Management System), Expert system, Artificial Intelligence which helps in
decision making MIS (Management Information System), DSS (Decision Support System).

Similarly in CAD/CAM system, real-time system and also in simulation and modeling where ybu
can model the real world.

Main focus is on the process or steps that must be taken
to get the desired outcome (algorithm). Main focus is on the data.

Program can be seen as a collection of procedures
interacting with each other.

Program can be seen as a collection of objects.

No control on data access; data flows freely in the
application.

Controlled data access; data is not directly
accessible to the outside world.

ffi OOP with C++ Principle of OOP's
Or

ut$0tl

1ll.

iv.

5.4 Advantages of OOP

OOP hns provided dffirent advantages, which are as follows:
i. Data hiding feature avoids misuse of your data.

ii. Largeprojects can be easily divided into different modules and can be integrated afterwards
thus leading into less time and gaining maximum productivity.

Re-usability of code is possible.

Message passing technique for communication between objects makes the interface
descriptions with external systems much simpler.

Object can be easily created whenever required.

The real world can be easily modeled into different objects which in turn can communicate
with each other, i.e., the real world can be simulated and modelec.

vii. Object oriented systems can be easily upgraded from small to large systems.

viii. Software complexity can be easily managed.

ix. It is possible to map objects in the problem domain to those in the program.

x. We can build programs from the standard working modules that communicate with one
another, rather than having to start writing the code from scratch. This leads to saving of
development time and higher productivity.

5.5 POP Vs. OOP

Following table summarizes the differences between the two most fundamental paradigms of
programming.

Object Oriented Languages
The concept of OOPs can be implemented using languages such as C and Pascal, However,

programrning becomes difficult and may generate confusion when the programs grow large. A
language which is specially designed to support the OOPs concepts makes it easier to implement
such large programs.

The languages should support several of the OOP concepts to claim that they are object oriented.
Depending upon the features they support, they can be classified into the following two categories.

vi.

5.

O"
913r0[OOP with C++ Principle of OOP's

5. I Object based Programming Languages

In a technical sense, the term "Object-based Language" may be used to
programming language that is based on the idea of encapsulating data and code

describe any
inside objects.

Object based language's need nor support inheritance and dynamic iill*lfi{[iffi
binding but those that do are also said to be object oriented. Object fi
based languages that do not support inheritance or subtyping are usualy ii'Sffi,ll
not considered to be true object oriented languages.

Languages that support programming with objects are said to be
object-based programming languages. For exnmple: Ada is a typical
object-based programming language.

Another example of a language that is object-based but not object
oriented is Visual Basic (VB). VB supports both objects and classes, but not inheritance, so it does
not qualify as Object Oriented.

Major features that are required for Object-based Programming are as follows:
o Data encapsulation
o Data hiding and access mechanisms
o Automatic initialization and clear-up of objects
. Operator overloading

6.2 Object Oriented Programming Languages (OOpLs)
Object oriented Programming Languages (OOPLs) are the natural choice for implementation of

an object oriented design because they directly support the object notions of classes, inheritance,
information hiding, and dynamic binding. Because they support these object notions, OOpLs make
an object oriented design easier to implement. An object oriented system progrimlmed with an
OOPL results in less complexity in the system design and implemeniation, wnicn can lead to an
increase in mnintainability. The genesis of this technology dates back to the early 1960s with the
work of Nygaard and Dahl in the development of the first object oriented language called Simula 67.
Research progressed through the 1970s with the development of Smalltalk at Xeiox. Current OOpLs
include C++, Objective C, Smalltalk, Eiffel, Common LISP Object System (CLOS), Object pascal,
Java, and Ada 95.

Object oriented (OO) applications can be writlen in either conventional languages or OOpLs, but
they are much easier to write in languages especially designed for OO ptogrurming. OO language
experts divide OOPLs into two categories, hybrid languages and pure OO languages. HyUriO
languages are based on some non-OO model that has been enhanced with OOloncepts. C++
(a superset of C), Ada 95, and CLOS (an object-enhanced version of LISP) are hybrid languages.
Pure OO languages are based entirely on OO principles; Smalltalk, Eiffel, Java, andSimuta are p:ure
OO languages.

ffi OOPwith C++ Principle of OOP's
o,

ur$0tl

1.

2.

In terms of numbers of applications, the most popular OO language in use is C++. One advantage

of C++ for commercial use is its syntactical familiarity to C, which many prografltmers already know

and use; this lowers training costs. Additionally, C++ implements all the concepts of object
orientation, which include classes, inheritance, information hiding, polymorphism, and dynamic

binding. One disadvantage of C++ is that it lacks the level of polymorphism and dynamics most OO

prografilmers expect. Ada 95 is a reliable, standardized language well suited for developing large.

complex systems that are reliable.

The major alternative to C++ or Ada 95 is Smalltalk. Its advantages are its consistency and

flexibility. Its disadvantages are its unfamiliarity (causing an added training cost for developers), and

its inability to work with existing systems (a major benefit of C++).

ExERCISE
Review Ouestions

What is procedure oriented programming? State its features.

What is object oriented programming?

Distinguish between the following terms:

i. Procedure Oriented Programming and Object Oriented Programming

ii. Objects and Classes

iii. lnheritance and polymorphism

iv. Dynamic binding and message passing

Encapsulation is the mechanism by which data and functions are bound together within an

object defi nition. Comment.

Explain the following terms:

i. Object

ii. Class

iii. Message passing

Explain the concept of inheritance.
Give the advantages of OOP and application of OOP technology.

Which are the Object Oriented Languages?

Name the Object Based Languages.

^fu
urSl0ll

4.

5.

6.
7.

8.

9.

Bqsics Of C++

l. A Brief History of C and C++

l. I A Brief History of C
C is a general-purpose language which has been closely associated with the UND(operating

system for which it was developed - since the system and most of the programs that run it are written
in C. Many of the important ideas of C evolve from the old language known as BCPL, developed by
Martin Richards. The influence of BCPL on C proceeded indirectly through the language B, which
was written by Ken Thompson in 1970 at Bell Labs, for the first UNIX system on a DEC PDP-7.
BCPL and B are "type less" languages whereas c provides a variety of data types.

In 1972 Dennis Ritchie at Bell Labs wrote C and in 1978 the publication of "The C Programming
Language" by Kernighan and Ritchie caused a revolution in the computing world

In 1983, the American National Standards Institute (ANSI) established a committee to provide a
modern, comprehensive definition of C. The resulting definition, the ANSI standard, or "ANSI C",
was completed late 1988.

,.2 A Brief History of C++

The C++ programming language was designed and implemented by Bjarne Stroustrup at AT&T
Bell Laboratories as a successor to C. It retains compatibility with existing C programs and the
efficiency of C. It also adds many powerful new capabilities, making it suitable for a wide range of
applications from device drivers to artificial intelligence. C++ will be of inlerest to [JND(users

z
2 e 1 UlSloll

ffi OOP with C++ Basics of C++
o,$tFi

because of its intimate relation to C and its potential use for building graphical user inlerfaces to

UND(for UND(systems programming, and for supporting large-scale software development under

UND(.

C++ evolved from a dialect of C known as "C with Classes," which was invented in 1980 as a

language for writing efficient event-driven simulations. Several key ideas were borrowed from the

Simula6T and Algol6S programming languages. For example: It supports the features such as classes

with inheritance and virtual functions, derived from the Simula6T language, and operator

overloading, derived from ,4'19o168.

C++ is best described as a superset of C, with full support for object-oriented programming. This

language is in wide spread use. Figure 2./ shows the heritage of C++.

Flgure 2.1: The herltage of C++

Differences between C and C++
C++ is a superset of C or we can also say that C is a subset of C++, C came first. So according

to a general rule, a C++ compiler should be able to compile any C program. However, there

are small differences between C programs and C++ programs-differences that reveal subtle

incompatibilities between the two languages.

For example; the C++ language adds keywords that are not reserved by the C language. Those

keywords legitimately can be used in a C program as identifiers for functions and variables.

Although C++ is said to include all of C, clearly no C++ compiler can compile such a C
pfogram.

C programmers can omit function prototypes. C++ progranrmers cannot. A C function
prototype with no parameters must include the keyword void in the pararneter list. A C++

prototype can use an empty paftrmeter list.

Many standard functions have counterparts in C++ and C++ programmers view them as

improvements to the C language. Following are some examples:

o Malloc and free functions of Standard C are replaced by new and delete memory

allocation operators in C++.

o The character array processing functions declared in the Standard C library's <cstring>

header file are replaced by the Standard C++ string class.

2.
i.

ll.

ilr.

O"
ur$0tl OOP with C++ Basie ol C++

o The Standard C's stdio function library for console input and output is replaced by the
C++ iostream class library.

o Standard C's setjmp0 and longjmp0 functions are replaced by C++'s frylcatch/throw
exception handling mechanism.

iv. Although the languages share cornmon syntax they are very different in nature. C is a
procedural language. When approaching a programming challenge the general method of
solution is to break the task into successively smaller subtasks. This is known as top-down
design. C++ is an object-oriented language. To solve a problem with C++ the first step is to
design classes that are abstractions ofphysical objects. These classes contain both the state of
the object, its data members, and the capabilities of the object, its methods. After the classes
are designed, a program is written that uses these classes to solve the task at hand.

3. Features of C++
i. C++ supports all features of both structured programming and object oriented programming.
ii' It gives the easiest way to handle the data hiding and encapsulation with the help of powerful

keywords like class, private, public and protected etc.
iii. Inheritance, one of the most powerful design concept is supported with single inheritance and

multiple inheritance of base class and derived class.
iv' Polymorphism through virtual functions, virtual base classes and virtual destructors give the

late binding of the compiler.
v. It provides overloading ofoperators and functions.
vi. C++ focuses on function and class templates for handling parameterized data types.
vii. Exception handling is done by the extra keywords, namely, try, catchand throw.
viii. Provides friends, static methods, constructors, and destructors for the class objects.

4. Advantages and Disadvantages of C++
The C++ language is a structured language which supports all necessary components of a

structured language such as global and local variables, parameter passing by value and riference, and
function and/or procedure retum values. The C++ compiler also supports the concept of separate
compilation of source code modules and the linking of independent object modules eithei from
standalone files or from system or local libraries. This separate compilation feature allows the
programmer to recompile only the parts of an application that have changed and relink those
modified parts with existing modules to produce a new executable program.

The C++ compiler also allows an interface to assembly language. The compiler allows that block
of code to be written in assembly and tinked with blocks written in C++. A block of code could be a
function or simply several lines of code within a larger C++ function. The programmer only has to
use the keyword asm followed by an opening {, then the assembly code for the processor being used
and then a terminating). The assembly code can use any variable declared within the C++ code that
follows within the scope of the assembly code.

ffi Basics ol C++
O"

ut$0tl

The C language component of a C++ compiler has some weaknesses that make the language

difficult to use as an application language. The language lacks strong type checking, meaning that

the compiler will allow a character variable to be stored into a floating point variable without
complaining. The C++ component of a C++ compiler has much sffonger type checking and will
issue warnings for such behavior. So for the programmer to receive the maximum protection against

mixed type errors, it would be better to use the C++ component of the C and C++ compiler.
C++ does not have bounds checking on arrays. For emtnple: If a programmer declares an array

of 50 integers, but in the program code he or she by mistake stores a value into array element 52, the

compiler will not complain. This lack of bounds checking can cause severe problems in some

programs.-
in the MS-DOS and PC-DOS operating system, C++ does not have any memory protection from

access by pointers. A programmer can load a memory address of any place in memory into a pointer

and through that pointer retrieve or set the value at that memory address. This feature can cause the

DOS operating system to re-boot, hang-up, or crash completely. In addition, a programmer that is

unfamiliar with the use of pointers, can, in MS/PC-DOS, cause his or her hard disk drive to crash, be

reformatted, or destroyed. The same also holds true for the video display on a DOS machine.

Fortunately, mini-computer operating systems, such as LINDL have built-in memory protection that

prevents such dangerous happenings as stated above.

Also, C++ does not have sophisticated suing and record handling capabilities. Strings must be

handled with a series of functions supplied in the standard C++ libraries. With C++, sophisticated

String objects can be created as well as advanced record management schemes.

5. Applications of C++
C++ is suitable for handling any programming task such as development of editors, compilers,

databases, communication system and any complex real-life application systems. It is a versatile

language for handling very large programs.

i. C++ programs are easily maintainable and expandable. When a new feature needs to be

implemented, it is very easy to add to the existing structure of an object.

ii. We can build special object-oriented libraries which can be used later by many programmers,

since C++ allows us to create hierarchy-related objects.
iii. While C++ is able to map the real-world problem properly, the C part of C++ gives the

language the ability to get close to the machine-level details.
iv. It is expected that in the near future C++ will replace C as a general-purpose language.

6. Writing and Executing a'C++' Program
There are the various stages involved in the process from creation to execution of a proglam.

They are as follows:
i. Creating the Source Code: A C++ program is written as ordinary text (called source).

A small C++ program may only contain one file (called Source file), but a larger program

often contains several. The file containing the source code has to be a 'text' file with an

OOP with C++

o"
ut$0rl OOP with C++ Basix of C++

extension to indicate that it is a C++ program file. C++ implementations use extensions such

as .cc, .cpp and .cxx. Turbo C++ and Borland C++ use .cpp (C plus plus) for C++ programs.

7-ortechC++ system uses .cxx while UNIX AT & T version uses .cc.

Compiling the Source Code: The source file you have created is not a program file so to turn

your iource code into a program, a compiler is used. The compiler takes .cpp or .cc files,

preptocess them (removing comments, add header files) and translates them into object files
having extension .o or .obj.

For compiling the source code from the operating system's command line, you should type the

following statement. For example.' incase of Borland Turbo C++ compiler use statement /c

<filename>, incase of Borland C++ compiler use the statementbc <filename>.

Linking the Object Code to create an Executable Code: After successful compilation the

set of object files is processed by a linlcer. This program combines the files, adds necessary

libraries and creates an executable file with extension .exe. These steps are illustrated in the

figure 2.2.

Note: A library is a collection of linkable files that you have created, were supplied with your

compiler, or that you have purchased separately. All compilers come with a library of useful

functions (or procedures) and classes that you can include in your program. A function is a
block of code that performs a service, such as adding two numbers or printing to the screen.

A class is a collection of data and related functions.

Executing the Program: Once the executable file is ueated, you can run it by typing its name

at the DOS command prompt or through the option provided by the compiler software. If the

desired results are not achieved, changes may have to be made to the source code. When the

source code is changed, it has to be recompiled and linked to create the correct executable code.

Figure 2.2: Compllatlon steps

ll.

lll.

lv.

header files (.h)

Creates an object file
(.o or .obj)

Creates an executable file
(.exe)

7. Program
The majority of C++

general form:
unction-return-type function-name (argument Iist)

t
Local variabl_e declarations;
body of the function;

)

A general form for a Ca L++ pfc 1S aS ows
inc.l-usion of header fiLes
deflned constants
decLqrations of global variables
function-ret.urn-type main larguments from
t

declaration of l_ocal variables used by

i-.adrr aF f l.ra mr i n f rrnnl- i an .vveJ vt LttE rrrorf r ! qrru urvtr,

)

command line)
m:i n frrnnf i nn.

runcclon-return-type nexc_function (argument Iist)
Tt

decLaration of local variabLes for next_function;
hnArr a€ +h^ -^.,r f rrnnt- i nn .vvuJ vr Ltrg ltc^ L__

]

A C++ program must have one and only one function with the name main. main must be in
lower case. The main function should have a return type of either int or void, with int being the
preferred retum type. Since main is the entry point to the program from a calling process, wtrictr
could be the operating system or another program, the return value of main is used to indicate the
completion status of the called program. A program that returns a value 0 is considered to have
completed successfully and a return value other than 0 is considered to indicate an abnormal
termination.

All functions in the program, besides main, can have names the programmer desires. The names
of functions should indicate what task or purpose that function is to perform. All C++ keywords
must be in lower case. Function names can be composed of letters, digits and underscores and can be
a maximum of 30 characters, but must be unique in the first 8 characters.

Functions must have a pair of curly braces, { }, these signify the beginning and end of a function's
scope. The names of variables that are declared within a function can be the same as function names.
but this is not a good practice. Variables declared within the scope of a function are called local
variables. Local variables "live" only while the function has control. When the function terminates,
and control returns to the calling function, all local variables cease to exist. The statements within a
function are terminated with a semi-colon, this is called the statement terminator. Nested functions or
subroutines are not allowed. Nesting a function means that one function is defined within another.

The difference between a declaration and definition is important. A declaration announces the
properties of a variable or a function. The main reason for declaring variables and functions is for
type checking. If you declare a variable or function and then later make reference to it with data
objects that do not match the types in the declaration, the compiler will complain. The purpose of the
complaint is to catch type errors at compile time rather than waiting until the program iJrun, when
the results can be more disastrous.

Structure and Rules
programs are composed of functions. All functions have the followine

foll

o,
ut$0t OOP with C++ Basics of C++

A definition, on the other hand, actually sets aside storage space (in the case of a variable) or
indicates the sequence of statements to be carried out (in the case of a function). A function.
prototype, or declaration, is a return type followed by a function declarator followed by a semicolon.

A function definition is a return type followed by a function declarator followed by a function body
enclosed in matching braces, { }.A function definition can also serve as a declaration for all source

code following the definition. The only time a function declaration is actually required is when a
reference is made to a function before the function definition is specified.

A variable declaration with an extern specifier is not a definition, unless it has an initializer. The
function Fototype is a function declaration, but it is not a definition.

When first learning C++ programming, always start C++ programs with
#include<iostream.h> or #include<iostream>

These header files include the function prototypes that allow a program to call the standard

input/output functions that make it possible to write to the screen and read from the keyboard.

Sample C++ Program8.

tEtl

// Th;< iq mrr fireJ- C++ nrncram
include< 1os tream>
using namespace std;
'inl- m.ain/l

t
cout<<r'Welcome to C++"<<end1;
cin. get O ;
-^f ..-- n.lEUu!rr vt

)

If you compile and run this code, you will see the message "Welcome to C++" as output.

Explanation
kt's take a look at the above program line by line.

i. // This is my lirst program: This is a comment line. All the lines beginning with two back
slash signs (lD ue considered comments and do not have any effect on the behavior of the
program. They can be used by the programmer to include short explanations or observations
within the source itself. ln this case, the line is a brief description of what our program does.

ii. #include<iostream>: Sentences that begin with a hash sign (#) are directives for the
preprocessor. They are not executable code lines but indications for the compiler. In this case

the sentence #include<iostream> tells the compiler's preprocessor to include the iostream
standard header file. This specific file includes the declarations of the basic standard input-
output library in C++, and it is included because its functionality is used later in the program.

F-l
t!l

;Iq

OOP with C++ Basics of C++
o"

utilo;

rn. Using namespace std; : This line, namespace deftnes a scope for the identifiers that are used
in a program. For using the identifiers defined in the namespace scope we must include the
using directive, like using namespace std; here, std is the namespace where ANSI C++
standard class libraries are defined. All ANSI C++ programs must include this directive. This
will bring all the identifiers defined in std to the current global scope. using and narnespace
are the new keywords of C++.

int main0 : This line corresponds to the beginning of the main function declaration. The
main function is the point from where all C++ programs begin their execution. It is
independent of whether it is at the beginning, at the end or in the middle of the code - its
content is always the first to be executed when a program starts. For the same reason, it is
essential that all C++ programs have a main function.

main is followed by a pair of parenthesis 0 because it is a function. In C++ all functions are
followed by a pair of parenthesis 0 that, optionally, can include arguments within them. The
content of the main function immediately follows its formal declaration and it is enclosed
between curly brackets ({}), as in our example.

{, is the opening brace, marks the start of a code block. In this case it marks the start of
function mainQ. For every opening brace in a program there will be a corresponding closing
brace marking the end of the code block.

cout <<"Welcome to C++" << endl; : This instruction does the most important thing in this
program. cout is the standard output stream in C++ (usually the screen), and the full sentence
inserts a sequence of characters (in this case "Welcome to C++") into this output stream (the
screen). cout is declared in the iostream header file, so in order to be able to use it that file
must be included.

The endl manipulator outputs a newline and then flushes the stream. Because cout is buffered,
output may not be displayed when first written. Flushing the stream forces the contents of the
buffer to be output.

Notice that the sentence ends with a semicolon character (;). This character signifies the end of
the instruction and must be included after every instruction in any C++ program.

cin.getQ; : This line causes the program to wait for input from the cin input stream. This may
not be required, however, there are some programming environments, for instance, running a
console program in a Microsoft Windows environment, where the output may disappear
before you have an opportunity to see it when the program completes. Adding this line of code
will enable you to see the output, and then press Enter to continue. If not required for your
environment you can safely remove the line from your progtam.

return 0; : The return instruction causes the main0 function finish and return the code that
the instruction is followed by, in this case 0. Thus it is most usual way to terminate a program
that has not found any errors during its execution. As you will see in coming examples, all
C++ programs end with a sentence similar to this.

) is the closing brace, marks the end of function main0.

Y.

vl.

lv.

vnt.

tx.

vlt.

Q"
ur$0tl OOP with C++ Basics of C++

9. Comments
Comments are pieces of source code discarded or ignored from the code by the compiler. They do

nothing. Their purpose is only to allow the programmer to insert notes or descriptions embedded
within the source code. Comments can be written anywhere in the program and are used for
documentation.

C++ supports two ways to insert comments:

i. // line comment

The line comment, discards everything from where the pair of slash signs (//) is found up to
the end of that same line.

Forexample: //'tnis 1s a line comment

Everything after the // (double slash) to the end of the line is a cornrnent and ignored by the
compiler.

Basically the line comment (double slash comment) is a single line comment.

ii. /* block comment */
The second one, the block comment, discards everything between the /* characters and the
next appearance of the */ characters, with the possibility of including several lines.

Forexample: '. 3li".l"rill"lil:: :il3'l? ?i" rearures*/
Everything between /* and */ are comment and ignored by the compiler.

For multiline cornments the block comment (traditional C comment) is more suitable.

If you include comments within the source code of your programs without using the comment
character combinations //, /* or */, the compiler will take them as if they were C++ instructions and,
most likely cause one or several error messages.

| 0. Return Type of MAINo
In C++, main0 retums an integer type value to the operating system. Therefore, every main0 in

C++ should end with a return(0) statement; otherwise a waming or an effor might occur. Since
main0 returns an integer type value, retum type for main0 is explicitly specified as int. The
following definition of main0 is incorrect and shouldn't be used.
void main ()

The default return type for all functions in C++ is int. The following main without type and return
will run with a warnins:
main ()
{

ffi OOP with C++ Basics of C++
O"gt$0i

I l. Namespace std
When we include headers from the C++ standard library the contents are in namespace std. A

namespace is simply a declarative region. Its purpose is to localize the names of identifiers to avoid
name collisions. Elements declared in one namespace are separate from elements declared in
another. For more details refer chapter 14. There are three ways to qualify their use so that we can
use them in our program:

i. A using directive: using namespace srd;
This method is simple but it has the disadvantage that it pollutes the global namespace because
it makes all of the identifiers from namespace std available globally.

ii. A using declaration3 us ing std : : cour i
This is clearly more limited and has to be repeated for everything we wish to qualify, so if we
apply this to our first example instead of a using directive the program would be written:

l-n-]

#include<iostream>
trcina ciA..^.\rlf.vvsut
rrq.inn cf A..an|I.
rrcina c1-A..ain.

int main ()

{

cout <<"Welcome to C++t'<< endl-;
cin.get();
return 0;

mA
Explicit identifier: stci: r cin. get () ;
Here an explicit identifier is used as a prefix for each use. Our first program would then be
written:

lnclude< iostream>
int main ()

{ std::cout << 'tWeIcome to C++tt << std::end1 ;
std: : cin. get O ;
return 0i

i

12. Header File
Header files are source code files that contain defined constants, constant values, macros, data

types, templates and function prototypes. C and C++ need to define function prototypes for calls to
functions residing outside of the current file. All input/output functions, memory management
functions, string manipulation functions, math functions and assorted other functions reside in

I lt.

O"
urfl0rl OOP with C++ Basics of C++

extemal libraries and are not pafi of the syntax of the language. In order for a C and C++ program to
make use of these capabilities, the program must first include the proper header file that prototypes
the functions desire.

T!9 C++ library includes headers from the C standard library. These have names such as:<stdlib.h>, <string.h>, <time.h>
You can use these headers in your C++ programs but its contents are not in namespace std, they

are in the global namespace. Use of these older C headers is deprecated in C++; you can use them
but they may disappear from the standard at some time in the future.

C++ provides its own versions of these headers whose contents are in namespace std. The
equivalent headers for the above are: <cstdlib>, <cstring>, <crime>

In the new version of c++, instead of the suffix '.h' they have a 'c'prefix.
C++ also introduces a number of headers that didn't exist in C, such as: <iosrream>, <vecror>,

<algorlthm> etC.

There are also sr:me C++ headers, which don't use a '.h' extension, but they don't have a prefix
either.

Since the new-style header is a relatively recent addition to C++, you will still find many
programs using older versions of the C++ headers, pre-dating the standard. These will have names
such as:

<lostream.h>, <fstream.h> lnstead of: <iostream>, <fst.ream>
Incase of strings, there are three string headers to consider, the first two:

<string.h>, <cstring>
are for C-style strings (null-terminated character arrays). These contain the string functions such

as strcpyO, strcatO and strlen0. The former is the deprecated C library header, the latter is the more
recent C++ header.

The third string header is: <strins> and this is used for std::string class in C++.
Note that these older versions are not addressed by the C++ standard at all. They're not

deprecated, they're not C headers and they're not part of the C++ standard. They are simply old
headers that pre-date the standard and a great deal of code has been written using them over the
years. Generally you should prefer the use of the C++ headers from the standard library rather than
these older versions unless you're maintaining old code, but compilers are likely to continue to
provide both versions for some time to come for backward compatibiiity.

| 3. Output Statement (COUT)
The cout stream is used in conjunction with the overloaded operator << (a pair of ,,Iess than,,

signs).

Syntax
cout << variablel << variable2 <<. . a? tatiaEler',-

OOP with C++ Basics of C++
O"

util0i

The <<operator is known as insertion operator since it inserts the data that follows it into the

stream that precedes it.

"C++"

Variable

For examples

1. cout << 'routpu!
2. cout << 120;

Figure 2.3: Output using insertion operator

sentence" i / /ptinL Output sentence on screen
/ / print number 120 on screen

3. cout << x; / / print the content of variable -r on screen
In the examples above it inserted the constant string "Output sentence," the numerical constant

I20 and the variable x into the output stream cout.

In the first example output sentence is enclosed between double quotes (" ") because it is a string

of characters. Whenever we want to use constant strings of characters we must enclose them between

double quotes so that they can be clgarly distinguished from variables.

Consider the following two sentences, they are very different:
cout << trHellot';
cout << Hello;

The first sentence prints Hello on scleen and another sentence prints the content of HellO variable

on screen.

The insertion operator (<<) may be used more than once in a same sentence:

cout <{ ttHeIIo, lt << uI am rr << tta c++ sentencet';

This sentence would print the message Hello, I am a C++ sentence on the screen. The utility of
repeating the insertion operator (<<) is demonstrated when we want to print out a combination of
variables and constants or more than one variable:

cout << t'Hel1o, I amrt<< age << " years old and my zipcode is rr <<

z ipcode;
If we suppose that variable age contains the number 24 and the variable zipcode contains 90064

the output of the previous sentence would be:

He1lo, I am 24 years old and my zipcode is 90064

It is important to notice that cout does not add a line break after its output unless we explicitly

indicate it, therefore, the following sentences:

cout <(ttThis is a sentence. tt;

cout <(ttThi-s is another sentence. tt;

will be shown as following on screen:

This is a sentence. This is another sentence.

o"utoi OOP with C++ Basix of C++

Even, if we have written them in two different calls to cout. In order to perform a line break on
output we must explicitly order it by inserting a new-line character that in C++ can be written as \n:
cout << trFirst sentence. \n ";
cout << "Second sentence.\nThird senLence.";

produces the following output:
First sentence.
Second sentence.
Third sentence.

Additionally, to add a new-line, you may also use the endl manipulator. For example
cout << !'First sent.ence
cout << ttSecond sentence

would print out:
First sentence.
Second sentence.

The endl manipulator has a special behavior when it is used with buffered streams: they are
flushed. But anyway cout is unbuffered by default.

You may use either the \n escape character or the endl manipulator in order to specify a line jump
to cout.

)4, lnput Statement (CIN)
Handling the standard input in C++ is done by applying the overloaded operator >> (a pair of

greater than sign) known as exffaction operator on the cin stream.
This must be followed by the variable that will store the data that is going to be read.

Syntax
cin >> variableL >> variable2 >> . >> variablen

Flgure 2.4: Input uslng arilractlon operator

For example: int age;
cin >> age;

declares the variable age as M int type and then wais for an input from cin (keyboard) in order to
store it in this integer variable.

ffi OOPwith C++ Basics of C++
O"

uFt0i

cin can only process the input from the keyboard once the RETURN key has been pressed.
Therefore, even if you request a single character cin will not process the input until the user presses
RETURN once the character has been introduced.

You must always consider the type of the variable that you are using as a container with cin
extraction. If you request an integer you will get an integer, if you request a character you will get a
character and if you request a string of characters you will get a string of characters.
J|-l
ILJIs Program uslng cln and cout
#include<iostream>
using namespace std;
int marn ()

{ int i;
cout << 'rPlease enter an integer value: tt I
cin >> j-;
cout << ItThe value you entered is tt << i;
cout << " and its double is " << i*2 << r'\n";
ral-rrrn O.

Output
Please enter an integer value: 920
The value you entered is 920 and its double is 1840.
The user of a program may be one of the reasons that provoke effors even in the simplest

programs that use cin (like the one we have just seen). Since if you request an integer value and the
user introduces a name (which is a string of characters), the result may cause an error. You can also
use cin to request more than one datum input from the user: cj-n >> a >> b;

is equivalen, to'"t""i;
3,, o,

In both cases the user must give two data, one for variable a and another for variable b that may
be separated by any valid blank septrator: a space, a tab character or a new line.

ExeRctsEs
A. Review Questions
l.
2.

4.
).
B.

What are the features of the C++ language?
How can a comment be written in a C++ program?
Explain the main0 function in C++.
How you give comment in C++?
Explain the structure of a C++ program.
Programming Exercises
Write a C++ program that prints the following message on screen "My first C++ program"
(Use cout statement).
Find enors if any in the following C++ statements:

l.

2.

i. cout >> "X="x;
iii. cout <<\n"Name:" << name

ii. cin <<x;<<y;
iv. cout << "Enter value:"

rl"
tm

o

ressron

|, lntroduction
As mentioned earlier, C++ is a superset of C and therefore most constructs of C are legal in C++

with their meanings unchanged. However, there are some exceptions and additions. In this chapter,
we shall discuss these exceptions and additions with respect to tokens and control structures.

The C++ Character Set

Basically a character is used to represent information. It can be an alphabet, digit or special
symbol.

The C++ character set consists of upper and lower case alphabets, digits, and special characters.
The alphabets and digits are together called the alphanunreric characters.

i. Alphabets

A B C2
ab c2

ii. Digits

0123456789
iii. Specialcharacters

,.i r # | tt ! I

3o1
o,

ut$0n

ffi OOPwith C++ Expression
O"

ut$0tl

2. C++ tokens
A token is the smallest element of a C++ program that is meaningful to the compiler. The C++

parser recognizes these kinds of tokens: identifiers, keywords, constants, operators, punctuators, and
other separators. A stream of these tokens makes up a translation unit.

Tokens are usually separated by "white space." White space can be one or more: blanks,
horizontal or vertical tabs, new lines, formfeeds, comments, etc.

C++ programs are written using these tokens, white spaces and the syntax of the language. Most
of the C++ tokens are basically similar to the C tokens with the exception of some additions and
minor modifications.

Flgure 3.1: G++ tokens

2.4 ldentifiers and Keywords

) ldentifiers
Identifiers can be defined as the name of the variables, functions, class and anays in our

programs. These names, or identifiers, are required to conform to some simple rules.

An identifier must start with a letter and is composed of a sequence of letters, digits and
underscore. The identifier name cannot start with a digit. While ANSI C allows the use of only 32
characters, there is no restriction on the length of an identifier.

Identifiers beginning with an underscore followed by an upper case letter are reserved for use by
the implementation, as are identifiers containing two consecutive underscores, so as to avoid
problems you should refrain from using them for your own identifiers.

There are identifiers reserved explicitly for C++ language. These are used to implement the
specific features of the language and are called keywords.

You can't use an identifier that is a C++ keyword as a variable name in your programs.

You should also try to avoid using names from the C++ library,for example: swap, flulx.

C++ is case sensitive, so upper case and lower case characters are distinct. This means that the
names "userlnput" and "userinput" are recognised as two different identifiers.

Examples of acceptable identifters are:

calculate_height, readWindSpeed, channel42, foo

o,
u$0i OOP with C++ Expression

Exarnple s of unacc eptable identifiers :
calculate height space between characters of a single variable
delete
2let0ers

a0test

it is keyword
variable begins with a digit
use of special characters

invalid
invalid
invalid
invalid

) Keywords

Keywords are the words, which have been defined, in the C++ compiler.
Keywords zre reserved words and are predefined by the language. They cannot be used by the

Programmer as variables or identifiers. It is mandatory that all the keywords should be in lower case
letters.

Following are the keywords:
The reserved words the ANSI C I are:

auto double int struct break else long switch

case enum register typedef char ertern return unton

const float short unsigned continue for signed void

default goto sizeof volatile do if static while

The following reserved words have been added for C++

catch protected delete public friend template inline this

new throw operator try private virtual wcharJ

In addition, the X3J16 Technical Committee has proposed that the following keywords be added
to the language definition for C++.

and and_eq bitand bitor bool compl not not_eq or or_eq xor xor_eq

2.2 Yariable
A variable name is an identifier or symbolic name assigned to the memory location where data is

stored. In other words, it is the data name that refers to the stored value.
A simple variable can have only one value assigned to it at any given time during program

execution. Its value may change during the execution of the program.

num -) variable name

| 20 | -+ value

1502 -) memory address

) Rules regarding Naming Variables

i. Since the variable name is an identifier, the same rules apply.
ii. Meaningful names should be given so as to reflect the value it is representing.

OOP with C++ Expression
O"

ut$0i

Example

studontname rankl

basic sal amount

roll num No_ofjears

Unlike C, in C++ a variable can be declared at the place of its first use iil a program. This makes
the program much easier to write and reduces the errors. It also makes it easy to understand the

context in which the variable are declared and used.

2.3 Constants (Literals)
Constants or literals refer to fixed values that do not change during the

execution of a program.

Like C, C++ supports several kinds of literal constants. They include
integer numbers, floating-point numbers, characters and strings.

Literal constants do not have memory locations.

l. Integer Constants

Integer constants are constant data elements that have no fractional parts or exponents.

They always begin with a digit. You can specify integer constants in decimal, octal or
hexadecimal form. They can specify signed or unsigned types and long or short types.

They are numerical constants that identify integer decimal numbers. Notice that to express a
rrumerical constant we do not need to write quotes (") nor any special characier. There is no
tkrubt that it is a constant: whenever we write t776 in a program we will be referring to the
vllue 1776.

An integer constant has to follow the following rules:

a. lt contains a sequence of digits from 0 to 9. (Octal contains digits from 0 to 7;
Hexadecimal constant contains digits from 0 to 9 and letters A - F or a - f.)

b. An octal constant is preceded with 0 character (zero character) and hexadecimal
constant with 0X or 0x (zero, x).

c. No commas, spaces or other symbols are allowed in between.

d. The integer can be either positive or negative. It may or may not be prefixed by a - sign.

e. A size or sign qualifier can be appended at the end of the constant.

U or u for unsigned. S or s for short

Example

L or I for long.

123 56789U (unsigned integer)

-31000 76899091(long integeQ

0170 OXS4ADL (long hexadecimal)

Ox 2A 6578890994 UL (unsigned long integer)

-100 s 120US (unsigned short)

O"
uilo; OOP with C++ Expression

il. Floating Point Constants

These are real numbers having a decimal point or an exponential or both. The rules governing
the floating point representation are:

a. They have a decimal point and digits from 0 to 9.

b. No embedded spaces, commas and other symbols are allowed.

c. They may or may not be prefixed by a - sign.

d. It is possible to omit digits before or after the decimal point.

Example:0.246 975.64 - .54 +5.

Exponentlal notatlon
This is used to represent real numbers whose magnitude is very large or very small.

Format

mantissa e exponent
Or mantissa E exponent

1. The mantissa can be a floating point number or an integer.

2. It can be positive or negative.

3. The exponent has to be an integer with optional plus or minus sign.

Example: The number 231.78 can be written as 0.23178e3 representing}.Z3I78 x l0 3.

75000000000 can be written as 75e9 or 0.75e1 1.

0.0000045 can be written as 0.45e - 5.

iii. CharacterConstants
A character constant is any single character enclosed within single quotes.

Example: char ci
' c - tAr;

stores a single character A into the character variable c.

The value of the character constant is the numeric value (ASCII) of the character. Every
character constant requires 1 byte of memory.
Example: The character constant '0' has ASCII value 48, which is unrelated to numeric digit
0.

Difference between x and'x' is that x refers to variable x, whereas 'x' refers to the character
constant txt.

Escape &quences
Like C, C++ supports some special character constants used in output functions (cout) to
control cursor movement on the video display device. Some dot matrix printers also support
the cursor movement escape sequences to move the print head on the page.

They are also called backslash character constants because they contain a backslash and a
character. Although they look like two characters, they represent only one.

The complete set of escape sequence is

\a alert (bell) sounds a beep

\b backspace moves cursor one position to the left of current position

V form feed advances computer stationery to start of next page

\n newline moves cursor to start of next line

\r carriage return takes cursor to beginning of same line

u horizontaltab moves cursor to next tab stop
w verticaltab moves cursor to next vertical tab stop
\0 null character It is used to terminate a string

\ Backslash used to display a \
\? question mark used to display a ?

single quote used to display a'
double quote used to display a "

\000 octal number Each 0 represents an octaldigit

\xhh
hexadecimal
number Each h represents a hexadecimaldigit (G-9,a-{)

iv. String Literal
A string constant or string literal is a sequence of zero or more characters enclosed in double
quotes.

Exatnple: "Welcome to C++,,
"First Line \n Second Line,'

The double quotes are not a part of the string but only act as delimitens. If the backslash or
double quote is required to be a part of the string, they must be preceded by a backslash (\).
Exarnple: cout<< ,,\\ is a backslash,,; dj-splays \ is a backsLash
Technically, the internal representation of a string has a null character ('\0') at the end.
Therefore the physical storage required is one more than the number of characters in the
string.

Dltference between'a' and "a"
'a' is a character constant and stored as the numeric value of a. "a" is a string literal and
consists ofthe characters. a and'\0'.

ta'

l-"l
lbyte

Enumeration Constant
An enumeration is a user defined type that enables the user to define the range of values for
the type. Named constants are used to represent the values of an enumeration.

"a"

a \0
l byte l byte

v.

Or
s3t0rl OOP with C++ Expression

vi.

For emmple

enum
weekday {monday, tuesday, wednesday, thursday, friday, saturday, sunday } ;
weekday currentDaY = wednesday;
if (currentDaY==lussday)

t
/ / do somethi-ns

)

The default values assigned to the enumeration constants are zero-based, so in our exirmple
above monday == 0, tuesday == 1, and so on.

The user can assign a different value to one or more of the enumeration constants, and
subsequent values that are not assigned a value will be incremented.

For exnmple: enum fruit{app}e:3, banana=7, orange, kiwi} ;
Here, orange will have the value 8 and kiwi 9.

Defined Constants (#define)

You can define your own names for constants that you use quite often without having to resort
to variables, simply by using the lfdefine preprocessor directive.

Syntax

lbtlno identifier value

For example.' #def ine Pr 3. !4L59255

fS::it: illHii*loo'"'
They define three new constants. Once they are declared, you are able to use them in the rest
of the code as any if they were any other constant.

For examPte' ::;:t:.=*3*rril,.''
In fact the only thing that the compiler does when it finds #define directive is to replace
literally any occurrence of them (in the previous example, PI, NEWLINE or WIDTH) by the
code to which they have been defined (3.14159265, '\tr' and lfi), respectively). For this
reason, #define constants are consideredmacro constants.

The #define directive is not a code instruction, it is a directive for the preprocessor, therefore it
assumes the whole line as the directive and does not require a semicolon (;) at the end of it. If
you include a semicolon character (;) at the end, it will also be added when the preprocessor
will substitute any occurrence of the defined constant within the body of the program.

vli. Declared Constants (const)

With the const prefix you can declare constants with a specific type exactly as you would do
with a variable:

ffi OOP with C++
O.

uttoiExpression

const int wldth = 100;
const char tab : t\tt;
const zj-p = 12440;

In case that the type was not specified (as in the last example) the compiler assumes that it is
type int.

The declared,constants are memory locations whose values cannot be changed. Their values
cannot be modified by the program in any way. As seen in the examples above, a name is
associated with a constant value or expression just like a variable.

A const declaration is local to the file of its declaration. To make them global these must be
explicitly defined &s extern.

extern const int width : L2440;

3. Data Types
When we wish to store data in a C++ program, such as a whole number or a character, we'have to

tell the compiler which type of data we want to store. The type will have characteristics such as the
range of values that can be stored and the operations that can be performed on variables of that type.

Data types in C++ can be classified under various categories as shown infigure 3.2.

Flgure 3.2: Hlerarchy of C++ data types

3. I Fundamental Types

C++ provides the following fundamental built-in types: Boolean, character, integer and floating,
point. It also enables us to create our own user-defined types using enumerations and classes.

' For each of the fundamental types, the range of values and the operations that can be performed
on variables of that type are determined by the compiler. Each compiler should provide the same
operations for a particular type but the range of values may vary between different compilers.

O"
utft0i OOP with C++ Expression

char 1 character or integer 8 bits length.
signed: -128 to 127

unsigned: 0 to 255

int 2

Integer. lts length traditionally depends on
the length of the system's Word type, thus in
MSDOS it is 16 bits long, whereas in 32 bit
systems (like Windows 9x/2000/NT and
systems that work under protected mode in
x86 systems) it is 32 bits long (4 bytes).

signed -32768 to 32767

unsigned:0 to 65535

short 2

Type short int (or simply short) is an integral
type that is larger than or equal to the size of
type char, and shorter than or equal to the
size of type int.

signed -32768lo 32767

unsigned.0 to 65535

long 4

Type long (or long int) is an integraltype that
is larger than or equal to the size of type int.

Objects of type long can be declared as
signed long or unsigned long. Signed long is
a synonym for long.

signed. -2147483648to
2147483647
unsigned: 0 to 4294967295

float 4 floating point number. 3.4e - 38 to 3.4e - 38 (7 digits)

double I double precision floating point number. 1 .7e - 308 to 1 .7e + 308 (15 disits)

long double 10 long double precision floating point number.
3.4e - 4932 to 1.1e + 4932
(19 digits)

bool 1

Boolean value. lt can take one of two values:
true or false.
Note: This is a type recently added by the
ANSI-C++ standard. Not all compilers
suooort it.

true or false

wchar t 2

Wide character. lt is designed as a type to
store international characters of a two-byte
character set.
Nofe: This is a type recently added by the
ANSI-C++ standard. Not all compilers
support it.

wide characters

Note
1. Signed means the number can be positive or negative.
2. Unsigned means the number must be positive.
3. Values of columns Bytes and Range may vary depending on your system. The values included

here are the most commonly accepted and used by almost all compilers.

3.2 User Defined Data Types

i. Structure
We have used user-defined data types such as struct and union in
C, while these data types are not suitable for programming in C++,
some more features have been added to make them suitable for
obj ect-oriented programming.

il.

OOP with C++ Expression

For example
struct book
{

alr:r l-raa'L 4Al5l ._+sLvJ t
char book_name 1.251 ;
char author t25j;
char category [15] ;
fIaat- nrina.

r! fvv,

\t

Unions

Unions allow a portion of memory to be accessed as different data types, since all of them are
in fact the same location in memory. Its declaration and use is similar to the one of structures
but its functionality is totally different:

model_name
I
a

typel element1l
type2 element2l
type3 element3l

nhi an

All the elements of the union declantion occupy the same space of memory. Its size is one of
the greatest element of the declaration. For example:
union mytypes_t { char c;

int i;
. IJ-oaE r;
tmytyPes;

defines three elements:
mytypes . c
mytypes. i
mytypes. f
each one of a different data type. Since all of them are referring to a same location in memory,
the modification of one of the elements will affect the value of all of them.
One of the uses a union may have is to unite an elementary type with an array or structures of
smaller elements. For example
union mix_t{ long 1;

struct {
short hi;
short l-o;
) s;

char c[4];
lmix;

defines three names that allow us to access the same group of 4 bytes: mix.l, mix.s and mix.c
and which we can use according to how we want to access it, as long, short or char
respectively. I have mixed types, arrays and structures in the union so that you can see the
different ways that we can access the data:

O"
ur$0tl OOP with C++ Expression

mtx

ilt.

mix.1

mix.s.hi mix.s.lo

mix.c[0J mix.c[1] mix.c[z] mix.c[3]

Anonymous Unlons
In C++, we have the option that unions be anonymous. If we include a union in a structure
without any object name (the one that goes after the curly brackets { }) the union will be
anonymous and we will be able to access the elements directly by its name.

For example; Look at the difference between these two declarations:

struct {
char title[S0];
char author[S0];

union {
float dollars;
int yens;

) price;

] book;

struct {
char title[S0];
char authort5Ol;

union {
float dollars;
int yens;

I'
) book;

The only difference between the two pieces of code is that in the first one we gave a name to
the union (price) and in the second we did not. The difference is when accessing members
dollars and yens of an object. In the first case it would be:
book.price.dollars
book.prlce.yens
whereas in the second it would be:

book. dollars
book. yens
Once again I remind you that because it is a union, the fields dollars and yens occupy the
same space in the memory so they cannot be used to store two different values. That means
that you can include a price in dollars or yens, but not both.

Class

A class enables us to create sophisticated user defined types. We provide data items for the
class and the operations that can be performed on the data. For emmple: To create a square
class that has a data item for size, and provides draw and resize operations:
nl:qq <dirrra IvYsgsv I

hrrLl i
^.r/qvrrv

square o i
-square () ;
void draw O ;

OOP with C++ Expression
Or

ur$0i

private:
t.),

Enumerations (enum)

Enumerations serve to create data types to contain something different that is not limited to
either numerical or character constants nor to the constants true and false. Its form is the
following:

For example; We could qeate a new type of variable called color to store colors with the
following declaration:
enum colors_t{black, b1ue, green, cyan, red, purple, yellow, white};
Notice that we do not include any fundamental data type in the declaration. To say it in
another way, we have created a new data type without it being based on any existing one: the
type colors-t, whose possible values are the colors tliat we have enclosed within curly
brackets {1. For example: Once declared the colors-t enumeration in the following
expressions will be valid:

' anlar< f mrrnnlnr.gv+v!,

mycolor : blue;
if(mycolo6 := green) mycolor = red;
In fact our enumerated data type is compiled as an integer and its possible values are any type
of integer constant specified. If it is not specified, the integer value equivalent to the first
possible value is 0 and the following ones follow a +1 progression. Thus, in our data type
colors-t that we defined before, black would be equivalent to 0, blue would be equivalent to
L, green to 2 and so on.

If we explicitly specify an integer value for some of the possible values of our enumerated
type (For example: the first one) the following values will be the increases of this,

For example
enum months-t {january=1, february, march, april, mdy, june,
jufy, august, september, ocLober, november, december]t y2k;
In this case, variable y2k of the enumerated type monthsJ can contain any of the 12 possible
values that go from january to december and that are equivalent to values between I and 12,
not between 0 and 1.1 since we have made january equal to 1.

3.3 Derived Data Types

i. Arrays

The application of arrays in C++ is similar to that in C. The only execution is the way
character arrays are initialized. When initializing a character array in ANSI C, the compiler
will allow us to declare the array size as the exact length of the string constant.

l'ranl ra<izalinf nat^rQi zo\ .
Luv L

'in1- ciza.

tv.

o"gttoi

il.

OOP with C++ Expression

For example:
char strins[2] : "ab" i
is valid in ANSI C. It assumes that the programmer intends to leave out the null character \0 in
the definition. But in C++, the size should be one larger than the number of characters in the
string.
char strins[3] = "ab"i / /o.x. for C++

Functions

Functions have undergone major changes in C++. While some of these changes are simple,
others require a new way of thinking when organizing our programs. Many of these
modifications and improvements were driven by the requirements of the object-oriented
concepts of C++. Some of these were inffoduced to make the C++ program more reliable and
readable.

Pointers

Poiniers are declared and initialized as in C. Examples:

ilt.

C++ adds the concept of constant pointer and pointer to a constant.

char *const ptrl = "ABC'; //constant pointer
We cannot modify the address that ptrl is initialized to

int const *ptr2=&x; / /pointer to a constant

ptr2 is declared as pointer to a constant. It can point to any variable of correct type, but the
contents of what it points to cannot be changed.

We can also declare both the pointer and the variable as constants in the following way:

const char *const cp : "ab"i
This statement declares cp as a constant pointer to the string which has been declared a
constant. In this case, neither the address assigned to the pointer cp nor the contents it points to
can be changed.

Pointers are extensively used in C++ for memory management and achieving polymorphism.

3,4 Definition of own types (typedef)
C++ allows us to define our own types based on other existing data types. In order to do that we

shall use keyword t

int- *in.ly,
iP : ey;
i - CO.LP _ LV,

where existingtype is a C++ fundamental or
name that the new type we are going to define will

/ / int" pointer
// addra<< nf rr acqianaA tn .in

ev 4l/

/ / 20 assigned to y through indirection

any other defined
receive.

new_type_name is thetype and

re OOPwith C++ Expression
O.$t|tl

Forexample: typedef ihar c;
typedef unsigned int WORD;
typedef char * string-t;
typedef char field[50] ;

In this case we have defined four new data types: C, WORD, string-t and field as char,
unsigned int, char* and char[S0] respectively, that we could perfectly use later as valid types:
t -^Lrr rnatLarnh=r *nfahrrl IU dUllql t qllV Urlel UIlal , }/ Uullq! ! t

WORD mywordi
string_t ptchar2 i
f iel-d name;

typedef can be useful to define a type that is repeatedly used within a program and it is possible

that we will need to change it in a later version, or if a type you want to use has too long a nirme and

vou want it to be shorter.

4. Declaration of Variables
In order to use a variable in C++, we must first declare it specifying which of the data types we

want it to be. The syntax to declare a new variable is to write the data type specifier that we want
(ike int, short,'float...) followed by a valid variable identifier.
Syntax

<data_f ype> <variable_name>
For emmple: int number;

float mynumber;
Are valid declarations of variables. The first one declares a variable of type int with the identifier

number.
The second one declares a variable of type float with the identifier mynumber. Once derlared,

variables number and mynumber can be used within the rest of their scope in the program.

For example: The following program illustrates the operation with variables.

/ / OperaLing with variables
incfude<iostream>
using namespace std;
i nt m: i n I I
I / / dec l:ri no rrariables:| | | svv-er+..y

i-nt a, b;
l -+ -^^.,1r.IIIU lgDqIUt
/ / nrnnoqq.

a = 5i
p - Lt

a = a + 1;
result:a-bi
/ / dti snl:rr the reSult:
cout << resulti
/ / termtnate the program:
rert rrrn 0;

l ,frrlA

Or
0r$0rl OOP with C++ Expression

All the variables that we are going to use must have been previously declared. An important
difference between the C and C++ languages, is that in C++ we can declare variables anywhere in
the source code, even between two executable sentences, and not only at the beginning of a block of
instructions, which happens in C.

Variables will be declared in three basic places:

Local Variables: Variables that are declared inside a function are called local variables. In
some cases these variables are referred to as automatic variables.

Local variables may be referenced only by statements that are inside the block in which the
variables are declared. In other words, local variables are not known outside their own code
block.

ii. Formal Parameters: If a function is to use arguments, it must declare variables that will
accept the values of the arguments.

These variables are called the formal parameters of the functions. They behave like any other
local variables inside the functions.

Forexample: void sub(int x, int Y)

) function body

))
In the above example, sub is a function which accepts two integer values in variables x and y.

It could be also written as follows:
void sub (x, y)
l-nt x;
lnt Y;
1

function body
)

Global Variables: Unlike local variables, global variables are known throughout the program
and may be used by any piece of code. Also, they will hold their values throughout the
program's execution.

You create global variables by declaring them outside of any functions. Any expression can
access them.

include< ios tream>
int a; I

char name, I el.obst Varl,ab!'ot
char p t20l ;1
main ()
I

ilI.

ln the definition of function parameters

ffi OOP with C++ Expression
o"

0til0rl

unsigned short age; I -
float firstnumber, secondnumber ' t Loell vt,sttbrot

coutr << "Enter your age:"; 1 InltructJ;ontcin>>age;) -------
1
)

In addition to local and global scopes, there exists external scope, that causes a vadable to be

visible not only in the same source file but in all other files that will be linked together.

5. I nitialization of Variables
When declaring a local variable, its value is undetermined by default. But

variable to store a concrete value the moment that it is declared. In order to do

append an equal sign followed by the value wanted to the variable declaration:

identifier r initiatvpe rdentr-trer t lnrtl-ar-va-Lue;
For example: If we want to declare an int variable called x that contains the value 3 at the

moment in which it is declared, we could write: int x = 3;

Additionally to this way of initializing variables (known as C-like), C++ has added a new way to
initialize a variable: by

"n"loting
th" ioitiul uulu" b esis 0:

For example.' int a (o) ;

Both ways are valid and equivalent in C++.

5. Reference Variables
C++ introduces a new kind of variable known as the reference variable. A reference is a variable

name that is a duplicate of an existing variable. It provides a technique of creating more than one

name to designate the same variable. The syntax of creating or declaring a reference is:

DacaTvpe &ReferenceName = VariableName
To declare a reference, type the variable's name preceded by the same type as the variable it is

referring to. Between the data type and the reference name, type the ampersand operator "&". To

specify what variable the reference is addressed to, use the assignment operator "=" followed by the

name of the variable. The referred to variable must exist already. You cannot declare a reference as:

tnt eMine;
The cornpiler wants to know what variable you are referring to. Here is an example:

#include<iostream>
,.^t^- ^^ ^+^.UD,I19 li4lttEDPque J Luf
marn ()

t

you may
that, you

want a
have to

O.
utd0fl OOP with C++ Expression

JtTrrml.rar.

The ampersand operator between the data type and the reference can assume one of

irflE5
three

positions as followed:
tnt& Nbr;
iat & Nbr;
lat eNbr;

As long as the & symbol is between a valid data type and a variable name, the compiler knows
that the variable name (in this case Nbr) is a reference.

Once a reference has been initialized, it holds the same value as the variable it is pointing to. you
can then display the value of the variable using either of both.

int Number
int &Nbr

inc.l-ude<ios tream>
using namespace std;
main ()
{

int Number = 228;
int&Nbr=Number;
couL << rrNumber = rr <<
cout << trlts reference

Number << tt \n tt ;
= rr << Nbr << tt\n\n";

If you change the value of the variable, the compiler updates the
both variables would hold the same value. In the same way, you
reference, which would update the value of the referred to variable.

To access the reference, do not use the ampersand operator; just
sufficient to the compiler. This is illustrated in the following program:

value c.rf the reference so that
can rrodify the value of the

the raame of the reference is

iFilILJI

-#incl-ude<i-osLream>
using namespace std;
main ()

{

int Number : 228; // Regular variable
i-nt& Nbr = Number; / / Ref erence
cout << r?Number = rr << Number << tt\ntti
cout << trlLs reference = tr << Nbr << rr\pil-
/ / Changing the value of t.he originat variable
Number = 4250;
cout ((tt\nNumber = rr << Numbert
cout << "\nItS reference - r' << Nbr << '\nu.
/ / Modifying the val-ue of the reference
Nbr : 38570;
cout << r'\nNumber = rr << Number;
cout << tt\nIts reference : rt << Nbr << tt\n\ntt;

I

OOP with C++ Expression
o,

ur8t0rl

In this way,
variable's value

you can use either a reference or the
from the user. Here is an example:

variable it is referring to, to request the

mlx1

include< i- ostream>
using namespace std;
maln ()

{
dnrrhl a Dri na.

! !4vv,

double& RefPrice = Price;
cout << "What's the price? $";
ni n >> Dri na.

cout << tfPrice - $tt << Price << tt\ntt;
cout << 'r Same as : $ " << RefPrice << t'\n\n" ;
cout << "What's the price? $";
c1n >> RefPrice;
cout << ttPrice - $tt << Price << tt\ntt;
cout << rtSame as: $tt << RefPrice << tt\ntti

) ,tLll:

7. Operators

Less than a<b
Greater than a>b

>= Greater than or equal ?>=b
Less than or equal to €l<=b
Eoualto 8==b

t- Not equal a!=b

a<b&&c>d

o,
ufl0[OOP with C++ Expression

a++ or ++a

Assignment d=b

+= Addition and assignment
d += b same as
?=d+b

Subtraction and assignment
€t-=bsameas
?=4-b

Multiplication and assignment a*=b same as
?=?*b

Division and assignment
a/=b same as
d= alb

o/o= Modulo and assignment
a7o=b same as
d = Ao/ob

S= bitwise AND and assignment
a&=b same as
a=a&b

t- bitwise OR and assignment
al=b same as
a=alb

bitwise XOR and assignment
a^=b same as
?=d^b

<<= shift left and assignment d<<=b same as
d= d<<2

>>= shift right and assignment
6>>=4 same as
€l = €t>>b

The Conditional Operator
The conditional operator in C and C++ is only ternary operator. It works on three values as
opposed to the binary operators you have seen that operate on only two values. The
conditional operator is used to replace if-else logic in some situations. It is a two-symbol
operator, ?:, with the following format:

result = conditional_expression ? expressionl : expression
The conditional-expression is any expression in C and C++ that results in a True (nonzero)
or False (zerc) answer. If the result of conditional_expression is true, expressionl executes.
Otherwise, if the result of conditional-expression is false, expression2 executes. Only one of
the expression following the question mark ever executes. Only a single semicolon appears at
the end of expression2. The internal expressions, such as expressionl, do not have a
semicolon. The resultant value generated by the expression that is executed is returned and can
be captured into the result identifier.
If you require simple if-else logic, the conditional operator usually provides a more direct and
succinct method, although you should always prefer readability over compact code.

ffiffi OOP with C++ Expression
O"

tftil0i

il.

To see how the conditional operator work, consider the section of code that follows:

if (a > b)
ans : 10;

else
ans = 25;

You can easily rewrite this kind of if-else code by using a single conditional operator.

ans=a>b?10:25;

sizeof Operator
The sizeof operator returns the physical size, in bytes, of the data item for which it is applied.
It can be used with any type of data item except bit fields. The general form is:

size_t sizeof (item);

When sizeof is used on a character field the result returned is 1 (if a character is stored in one

byte). When used on an integer the result returned is the size in bytes of that integer. When
used on an array the result is the number of bytes in the array, not the number of characters
which appear before a NULL. In the ANSI standard the sizeof operator returns a data type of
size-t which is usually an unsigned int value.

int nums t10l;
cout<<" There are" <<sizeof(nums) <<"types in the array
and"<<sizeof (nums\ / sizeof (int) <<"elements"I

iii. Comma Operator
The comma ',' operator is used to separate a set of expressions. A pair of expressions
separated by a comma is evaluated left to right and the type and value of the result is the type
and value of the right operand.

Example: Consider i =(j = 3 , i + 2);

Here,therighthandsidecontainstwoexpressionsj=3andj+2whichareevaluatedL+R
Thus 3 is first assigned to j and the value 3 + 2 is assigned to i.

It could also be the used to interchange the values of two variables in a single statement as

shown.

temP:3, a:b, b:tempi

The comrna operator has the lowest precedence and associates from L + R.

7.a New Operators
All C operators are valid in C++ also. In addition, C++ introduces some new operators. List of

new operators is given below.

o,
ut$0i OOP with C++ Expression

; ,i,;i:ii.,fi,iiii
endl Line feed operator
new Memorv allocation operator

delete For releasino memory

Extraction operator
Insertion oDerator

Scope Resolution operator
Pointer - to member declarator

.* Pointer - to member operator

-)* Pointer- to member operator

setw Field width operator

In addition, C++ also allows us to provide new definitions to some of the built in operators. That
is, we can give several meanings to an operator, depending upon the types of arguments used. This
process is known as operator overloading.

i. Scope Resolution Operator (::)
The Scope Resolution operator (::) allows access to the global
variable even though there is a local variable of the same name
within the mainQ function. The use of the double colon in front of
the variable name instructs the system that we are interested in' using the global variable name rather than the local variable.

The use of this technique allows access to the global variable for any use. It could be used in
calculations, as a function parameter, or for any other putpose. It is not really good
programming practice to abuse this construct, because it could make the code difficult to read.
It would be best to use a different variable name instead of reusing this name, but the construct
is available to you if you find that you need it sometime.

Consider the example illustrating the use of scope resolution operator.

Program: :: scope resolutlon operator
in+ i - 1.lrrL r _ a, / / exLernal or global i
#include<iostream>

n:macnrna ctr{.

int- main/\
I
i^+ i - t.
LLLW !

-
L t

{

cout << trEnter i-nner
in+ h

-
i.IlrL lr - It

inf i
-

a.lrrs r - Jt

// nrinf tha lor-al i
cout<<i<<"i<>
cout << rrn : rr << n

oo, J|o- *
* Explairt new,

delete and soope
rersolutlon ,

OPStatOr.: .

|r=TItLtl

-

/ / redecLares i locally to maj-n
/ / an inner block within a funetion

b1ock" << endl;
/ / the global i is stil] vislble

/ / hLdes the global i which can only be
/ / referenced by using the : : operator

and the global i
::i rt << ::i << endl-;
<< endl;

ffi OOP with C++ Expression
Q"ut0;

I // end of
cout << ttEnter
// nrinl- l-ha

cout << i << ft

ral- rrrn O.
!v9gr.. v,

inner block
outer blockrr <<
current locaf i
i <> ::i tr << :

endl;
and the g1oba1 i

:i << endl;

Output
Enter inner block
3 i <> ::i 1

Enter outer block
2 i <> ::i 1

You can also use the class scope operator (Scope Resolution Operator) to qualify class names
or class member narnes.

If a class member name is hidden, you can use it by qualifying it with its class name and the

class scope operator.
In the following example, the declaration of the variable X hides the class type X, but you can
still use the static class member count by qualifying it with the class type X and the scope

resolution operator.

tntE35

inc lude<ios tream>
uslng namespace std;
cfass X
{ public:

static int count;

int X: :count : l-0;
int main ()

{ intX=0;
cout << X::count << endl;

)

/ / define static data member

/ / h:-des class type X
/ / use static member of class X

ii. MemberDereferencingOperators
a. :: : This operator is used to declare to a member of a class.

b. 'F ' This operator is used to access a member using object name and a pointer to that
member.

c. -+* : This operator is used to access a member using a pointer to the object and a
pointer to that member.

iii. Memory Management Operators

ln C, the dynamic memory allocation typically involves a call to malloc0, which is paired
with free0 to deallocate the memory.

C++ defines a new method for carrying out memory allocations and deallocations, i.e.. using
the new and delete operators that are discussed in (Section 9).

o,
$flm OOP with C++ Expression

7.2 Precedence and Associativity of Operators
The operators are listed in order of decreasing precedence.

The Operators grouped together in one level have the same precedence.

1. Scope operator Left + Right

2.

o Function call

Left -+ Right
tl Array element reference

-)
Pointer to structure member
reference

a Structure member reference

3.

Unary Minus

Right -+ Left

T Unary plus

++ lncrement

Decrement

Logicalnegation

One's complement

Pointer reference (indirection)

& Address

sizeof Size of an object

type Type cast

new New operator

delete Delete operator

4.

Multiplication
Left -+ Right

Division

% Modulo division

5.
f Addition Left -+ Right

Subtraction

6.
Left shift

Left --r Right
Right shift

7.

Less than

Left -+ Right
<= Less than or equal to

Greater than

>= Greater than or equal to

L
Equality

Lett -+ Right
l- Inequality

9. & Bitwise AND
Left -r Right

10. Bitwise XOR

ffi OOP with C++ Expression
o"

ur$0i

11 Bitwise OR

12. && LogicalAND
Left -+ Right

13. tl LogicalOR

14. 7' Conditional Left --r Righl

15.

o/o= += -=
&= A=

t-t-
<< = >>=

Assignment
Right -r Left

16. Comma Left -r Right

8. Type Cast Operator
C++ allows explicit type conversion of variables or expression using type cast operator. Its syntax

is similar to the syntax of function-call.

Syntax

-name (expression) / / C++ .notatio
A type-narne followed by an expression enclosed in parenthesis constructs an object of the

specified type using the specified expressions. The following example shows an explicit type
conversion to type int:

For example: 1nt x;
fl-oat Y : 2'I8;
x: inr(y)i

Here the float value gets typecast to an integer value and the value 2 alone is stored.

Explicit type conversions can also be specified using the "cast" syntax, i.e., C syntax.

Svntax

l(type-name) expression /,/ C notationl
The previous example, rewritten using the cast syntax, is:
x = (int)y;
Both cast and function-style conversions have the same results when converting from single

value. However, in the function-style syntax, you can specify more than one argument for
conversion. This difference is important for user-defined types.

But the function-style syntax usually leads to simplest expression and can be used only if the type
is an identifier. For example

a=int* (b);
is illegal. In such cases we must use the C type notation.

a:(int*) b;
Alternatively, we can use typedef to create an identifier of the required type and use it in the

function-style syntax.

o,
Tr$0i OOP with C++ Expression

typedef int * intjt
a=int_-pL (b) i

ANS/ C++ introduces four new casting operators:

i. static-cast, to convert one type to another type;

ii. const-cast, to cast away the "const-ness" or "volatile-ness" of a type;

iii. dynamic-cast,for safe navigation of an inheritance hierarchy; and

iv. reinterpret-cast, to perfonn type conversions on un-related types.

9. Memory Management Operators
Until now, in our prograrns, we have only had as much memory as we have requested in

declarations of variables, arrays and other objects that we included, having the size of all of them
fixed before the execution of the program. But, what if we need a variable amount of memory that

can only be determined during the program execution (runtime), For example: In case what we need

a user input to determine the necessary amount of space?

The answer is dynamic memory, for which C++ integrates the operators new and delete.

9. I new Operator
In order to request dynamic memory, the operator new exists. new is followed by a data type and

optionally the number of elements required within brackets [].
It returns a pointer to the beginning of the new block of assigned memory. Its form is:

ncer r
'lat

E

of

The first expression is used to assign memory to contain one single element of type. The second

one is used to assign a block (an anay) of elements of type.

For example
int *P = NULL; / / define an initially empty pointer
P=new inL;//allocates memory for a new integer and assigns its location to

/ /nP"
P:new int[100];//a]-]-ocates a array of 100 int and assigns its focation to

/ /"P"
Consider the following example

int * item;
item = new int[5];

In this case, the operating system has assigned space for 5 elements of type int in a heap and it
has retumed a pointer to its beginning that has been assigned to item. Therefore, now, item points to
a valid block of memory with space for 5 int elements.

ffi OOP with C++ Expression
o,

uilei

t

int

rtem

The most important difference between declaring a nonnal array and assigning memory to a
pointer is that the size of an a:ray must be a constant value, which limits its size to what we decide at
the moment of designing the program before its execution, whereas the dynamic memory allocation
allows assigning memory during the execution of the prog&m using any variable, constant or
combination of both as size.

The dynamic memory is generally managed by the operating system, and in multitask interfaces it
can be shared between several applications, so there is a possibility that the memory exhausts. If this
happens and the operating system cannot assign the memory that we request with the operator new, a
null pointer will be retumed. For that reason it is recommended to always check to see if the returned
pointer is null after a call to new.
int * item;
item: new intlS]i
if(item :: NULL) {

// e:ror assigmingr memorJr. ?a*e measuras.

9.2 delete Operator
Since the necessity of dynamic memory is usually limited to concrete moments within a program,

once it is no longer needed it should be freed so that it becomes available for future requests of
dynamic memory. The operator delete gxists for this purpose, whose form is:

@
or

delete t I pointer
The first expression should be used to delete memory allocated for a single element, and the

second one for memory allocated for multiple elements (anays). In most compilers both expressions
are equivalent and can be used without distinction, although indeed they are two different operators
and so must be considered for operator overloading.
delete Pi / /returns the memory allocated by the new integer back to the
/,/memory pool
delete []P; // reLurns the entire arrav to the memorv pool

€ Program
include<i ostream>
using namespace std;
int main ()

{1nt i,n;
long * J-;
cout << ItHow many numbers
cin >>i;
1= new longlil;
if(I::NULL) exlt(1);

/.l^ rr^" r.'-h+ +^ rrrn6 i n? rr.uv yvu W4rrL LU LJys rrt i I

O"
urtorl OOP with C++ Expression

for(n:0; n<i; n++)
{ cout<<rrEnter number : tt I

cj.n>>l- [n];
l
cout<<ttYou have entered: tt l
for(n=0i n<ii n++)
{ cout<<l [n] ((", tti]

delete [] 1;
-^+,,-^ n.
!gLU!ll Vt

Ellg

Output
How many numbers do you want to type in? 5
Enter number : 'l 5
Enter number : 436
Enter number : 1067
Enter number : 8

Enter number : 32
You have entered: '75, 436 , t067 , 8, 32,

This simple example that memorizes numbers does not have a limited amount of numbers that
can be inftoduced, thanks to us requesting to the system to provide as much space as is necessary to
store all the numbers that the user wishes to introduce.

NULL is a constant value defined in manifold C++ libraries specially designed to indicate null
pointers. In case that this constant is not defined, you can do it yourself by defining it to 0:

#define NULL 0
It is indifferent to put 0 or NULL when checking pointers, but the use of NULL with pointers is

widely extended and it is recommended for greatrer legibility. The reason is that a pointer is rarely
compared or set directly to a numerical literal constant except precisely number 0, and this way this
action is symbolically masked.

10. Expression
An expression is a combination of operators, constants and variables arranged as per the rules of

the language. It may include function calls, which return values. An expression may consists of one

or more operands, andzero or more operators to produce a value.

Types of Expression
i. Constant Expressions consists of only constant values.

Example:20I 4+M,'p',2
ii. Integral Expressions produce integer results after implementing all the automatic (implicit

type) and explicit type conversions.

Example:4+int(6.0), n * y, where n, y and p are integer variables.

OOP with C++ Expression
Or

utd0i

lu.

lv.

v.

Float Expressions produce floating point results after all conversions.
Example:45.10, p + q, p*q/5 where p and q are floating point variables.
Pointer Expressions produce address values.
Example: &p, "pqr", ptr
Relational Expressions or Boolean Expressions returns result of type bool which takes a
value true (1) or false (0).

When arithmetic expressions are used on either side of a relational operator, they will be
evaluated first and then the results are compared.
A relational expression is always a logical expression. Logical expressions are either relational
expressions or a combination of multiple expressions joined together by the logical operators:
&&, ll, and!.
Examples of relational expressions (also logical expressions) are as follows:
1. a< 2 * b -'7
z- c != -1
3. b > c + 4 * "7

Logical Expressions combines two or
results.

Example of a logical expression (not a relational expression):
(a < b) ll (b < c)
If a = 5, b = 3, and c = 10, the result of this expression is I (true).

A quick way to tell if an expression is logical but not relational is if one of the logical

vt.

operators is being used.

vii. Bitwise Expressions are used
testing or shifting bits.
Examples: y >> 3

p<<2

more relational expressions and produce bool type

to manipulate data at bit level. They are basically used for

chiff ? Lrit nnqil- ian fa riahfyvof urvrr Lv ! ryrrL

shiff 2 lnit nnsiljqn to feft
Shift operators are often used for multiplication and division by powers of two.

I l. Statement
C++ statements are the program elements that control how and in what order objects are

manipulated. A statement is composed of expressions and operators and it is a complete instruction
instructing the compiler to carry out some task. Statements always end with a semicolon except the
preprocessor directive.

Categories of staternents are as follows:
i. Expression statements: These statements evaluate an expression for its side effects or for its

feturn value.

ii. Null statements: These statements can be provided where a statement is required by the C++
syntax but where no action is to be taken.

iii. Compound statements: These statements are groups of statements enclosed in curly braces
({ }). They can be used wherever the grammar calls for a single statement.

o"
ut$0tl OOP with C++ Expression

lv. Selection statements: These statements perfonn a test; they then execute one section of code
if the test evaluates to true (nonzero). They may execute another section of code if the test
evaluates to false (zero).

Iteration statements: These statements provide for repeated execution of a block of code
until a specified termination criterion is met.

Jump statements: These statements either transfer control immediately to another location in
the function or return control from the function.

vii. Declaration statements: Declarations introduce a name into a program. (Declarations provide
more detailed information about declarations.)

12. Symbolic Constant
Symbolic Constants are memory locations whose contents also cannot be changed. Or we can

say that a name used to represent a constant value within a program is called as Symbolic Constants.

There are two ways of creating Symbolic Constants

Using the keyword const and

Defining a set of integer constants using enum keyword.

Using the keyword const: The keyword const can be added to a declaration to make an object
a constant. Once you declared an object as a constant its value cannot be modified by the
program in any way. Such an object must be initialized; it cannot be assigned a value. A const
variable can serve as a symbolic constant in programs. Here, you can associate (declare) a
name with a constant expression similar to the way you associate a name with a variable.

Example: const float pi : 3 .14L5;
A const in C++ defaults to the internal linkage and therefore it is local to the file where it is
declared. To give const values an external linkage so that it can be referenced from another
file, we must explicitly define it as an extern in C++.

For example: extern const total:100;
ii. Using the keyword enum: Another method of naming integer constants is by enumeration as

under;
enum{P, Q, R} ;

This defines P,Q and R as integer constants with values 0,1 and 2 respectively. This is
equivalent to:
const P:0i
const Q:1;
const R=2;

We can also assign values to P,Q and R explicitly. For example:
Enum{P=100, Q:300, R=200};
Such values can be any integer values. Enumerated data type has been already discussed in
3.2.

v.

vl.

i.
ii.
l.

OOP with C++ Expression
O"

ut$0i

| 3. Type Compatibility
The concept of compatible type combines the notions of being able to use two types together

without modification (as in an assignment expression), being able to substitute one for the other

without modification, and uniting them into a composite type. A composite type is that which results

from combining two compatible types. Determining the resultant composite type for two compatible

types is similar to following the usual binary conversions of integral types when they are combined

*ith some arithmetic operators. Obviously, two types that are same are compatible; their composite

type is also the same type. Less obvious are the rules governing type compatibility of non-identical

types, function prototypes, and type-qualified types. In C, Names in typedef definitions are only

synonyms for types, and so rypedef names can possibly indicate identical and therefore compatible

types. Pointers, functions, and iurays with certain properties can also be compatible types. A
r"parate concept of type compatibility as distinct from being of the same type does not exist in C++.

Generally speaking, type checking in C++ is stricter than in C: identical types are required in
situations where C would only require compatible types. For example: int, short int and long int are

three different types in C++. They must be cast when their values are assigned to one another.

Similarly, unsigned char, char and signed char are considered as different types, although each of
these has a size of one byte. In C++, the types of values must be the same for complete compatibility,

or else, a cast must be applied. These restrictions are necessary in C++ in order to support function

overloading where two functions with the same name are distinguished using the type of function

arguments. Another notable difference between C and C++ is that in case of C the char constant are

stored as ints but in C++, however, char is not promoted to the size of int. For example: in C,

sizeof('x') is equivalent to sizeof(int), but in case of C++, sizeof('x') is equals to sizeof(char).

Solved Programs

satiiiffi;

#ril"+iff
.1
.j

ii

" *#ffi *"*ffi

o"
ut$0tl OOP with C++ Expression

r .:...:,r.. .::.;. :.., :,

+,i.+,,;ll i
t,,i,; ,.

,ir.i r=in'i* '

C,rratiactt

ffi OOP with C++ EXpresston
O"

ut$0tl

u. # iaclvda<ioctrorarA>
includo<conio.[]

7id
nla(l

,. l

ff;;l'Jr," r',,"f:i'*,,, 'r ' '"' ' '
-

I
o' <('ln'<< atil<<(c +.Jr,t*t{r ,* tr'a' tItI t

#ffiit**giu"nloo'-' I
'ccc"l ''' ' ', ,"'

' ' ' ri i i; nai

**##*
l,2,3,,4):characterin thestring ICLASS"'', , . ,,iii, lincjgdr<lottreialr.h> :

#iacl.ude<coaio.h> , . ,

Tt",y^O' , ',,' ,,,.
: clract| i "'

for(ti0; tItI; t++t
c€nt << " ln "<<r fJ ** l <<* (t*t til <!!;$+a! <<l I s,l i

xr;::rtfhegiveniodeis: 1993 '
"'"'

' ''-'
i', ' .''' '.' '''' ' ' i'

frillfif$*'"-**ffi ***;*;;lu;*
I[llilf;?; iltJdi:; .?" and varue ori wourd be incremented bj'r-*o ir no*; ' '

" '
s1i++1 1i.e.,lr[,I,i i,e,, B and value of i would:br',i*r.,Senrrd'bv- 1'once,again so. i=Z'now)

Therefore arrittg fi*t iteration, the oupqt,woula$ nooO-. ' '' '" ' '1'' 1',
'

The next of the loop would incremen't thg. y'.glnsiof, i,by l.r,,,So;.now i+'3.',For
iteration,
i[s] (i,e., s[3], i.e,, E) -+ element at the bottomof,,itack , ,. '',;,;.. :. ,'''r1 :,'':. 'l; ;1

*(s+i++) (i.e., s[3], i.e., E, and value of i would b'e,incr.egrented',.by ll.soii$,now)]:. -",:,':' ,.,. ,.
s[i++] (i.e.. s[4], i.e., C md value of i would,be ihcre ted ry l,onCbruai+r-+o_ i=Srnorp)

Therefore during second itcration. the output would.bff'CEEE, ' ' , ' , . ,', 1:1: '

;lilil

o,
ut$0tl OOP with C++ Expression-m

#lf#,;ffir'i"

1.

2.

3.

4.

ExeRcrsEs
A. Review Questions

List 5 rules for forming variable names.
List all possible data types. (All basic data types along with their possible modifiers or
qualifiers.)
Write C++ instructions to ask a user to type irr three numbers and to read them into integer
variables first, second and third.
Write C++ instructions to output the value of a variable x in a line as follows:
The value of x i-s
Write C++ instructions to generate output as follows:
l ^l -^l ^ ^€ --

jl
d 9!!vrs v! rqqrUS

has area
and circumference

where the values of the radius, the area and the circumference are held in variables rad, area,
and circum.
Correct the syntax errors in the following C++ program:
lncl-ude iostream. h
main O ;
{

f ln:i- v \, ,.Z"J'Af

cout < ttEnter two numbers " i
cin>>a>>b
cout << "The numbers 1n reverse order are"<< b, a;]

Show the form of output displayed by the following statements when total has the value
352.74.
cout << trThe flnal total is: rr << endl;
cout << u$u << total << endl;
What data types would you use to represent the following items?
i. the number of students in a class ii. the grade (a letter) attained by a student in the class
iii. the average mark in a class
v. the population of a city
vii.the registration letter of a car

iv. the distance between two points
vi. the weight of a postage stamp

OOP with C++ Expression
O.

utsr0rl

B. Exercises
Write a program to read in four characters and to print them out, each one on a separate line,
enclosed in single quotation marks.
Write a progtam which prompts the user to enter two integer values and a float value and then

ints out the three numbers that are entered with a suitable

Ooil ectio.n d,QUe,C.tiO ns as.ked in P. r:'E'vi otrs

l.

2.

,ff TrTilrH*t:itTllii#lffi 'ffi
Y'ord ht!

-i*i'f:'i
.;"'i, ;"'' ..,'" iii

ii|.:ia..=1g;r.r:'.ll'r-:,.i.'.;.
j.,..'li.

,..'1...,.: ..;.t,.ii.,'.-;'.' -,.':....,.-.r,.t: .,'.r .ta.l..'-.' .r.*fiIffii'il,il. ,,.,,,.::.,.i....;,.. ,,..'.i:.tft ., i.. :..'.'.; ,,..:.; ,'.,.' t,:.,:.:..',;..,:,

c}-rjr si[.]. +r:T I;A$Silrt

s *i t:e,h,,(t,) :t1r .,.., r1, 1.i
:,.

i:,,.', r:,r . i, ; ;,r'

;.i..:.'.......|..-'''i':..';f;=il.''..';;'.'..'..'''':.j'1':''.;',..l'i;t"'"""i
5"gi'g

1ti

{:,,"i,_..i;i.ri,.1l .,.r,-..;r':...,,,1;i,,..i.,... r1:i.,r,.,..:ii..'.lir,:lt;1..':.:ir...,,,':.-t.i.:i:r-,ir

iii,

6ffi******

J*.
ut$otl

2t

l. lntroduction
Functions are a basic building block for writing C/C++ programs. Breaking up a program into

separate functions, each of which performs a particular task, makes it easier to develop and debug a
program.

l. I Advantages of using functions

There are several advantages ofusingfunctions in program deveropment.

i. Functions allow for breaking down the program into discrete units.

ii. Programs that use functions are easier to design, program, debug and maintain.

iii. ' It is possible to perform separate compilation of functions.

iv. Functions can receive data via arguments and can return a value.

v. Functions have local variables plus have access to global variables.

vi. A well-written function may be reused in multiple programs.

vii. Different programmers working on one large project can divide the workload by writing
different functions.

OOP with C++ Functions in C++
Or

u$0tl

1.2 Declaring a Function
A function is declared with a prototype. A function prototype consists of the return type, a

function name and a parameter list. The function prototype is also called the function declaration.

Functions are declared similar to variables, but they enclose their arguments in parenthesis (even

if there are no arguments, the parenthesis must be specified).

Syntax
function_name (Listreturn_tvpe function_name (list of parameters) i

For example

L int sum(int to);
2. 1nt bar O;
3. void foo(int ix,
4. void max (void) ;

/* Declaration of sum
/* Der:laraf ion of bar
int ;vl: /*Dpcl:fatiOn

)/'t , /

/* Decl-aration of max

with one argument */
with no arguments */
of foo with two arguments*/

with no arguments */

1.3 Defining a Function
The function definition consists of the prototype and a function body, which is a block of code

enclosed in parenthesis.

A declaration or prototype is a way
of any parameters, so it can perform
memory.

ral- rrrn irrna f rrnat i nn namo l1 i <1- nf n:r:maf orq\rr_!f tse evrv/

t l^^-1 "--i-'.1a Aanlrrrl- inn<.1 IUUAI_Vql IOp!C ssura- aLrvrlr t
statements;

I
r

The parameter list of a function may have parameters of any data type and nay have from no to
many parameters.

Variables can be declared within a function. These variables are local variables and can only be

used within the function.
Statement is the function's body. It can be a single instruction or a block of instructions.

Statements perfo(m the task of the function, which can also include calls to other C++ functions.
The retum statement can be used to return a sinsle value from a function. The return statement is

optional.

1.4 Returning Values

The return statement allows a function to return a value of the stated data type. This statement
immediately pushes a value onto the return stack and causes control to move to the ending curly
brace,), of the function, which returns control back to the calling function. Without a return
statement, a function implicitly returns a value of zero for the data type for which the function was

typed. The general form of the return statement is:

sYntax
r

I

of telling the compiler the data types of any return value and
error checkine. The definition creates the actual function in

O"
ut8totl QOP with C++ Functions in C++ ffi
For example
int sum(int to)
{ int ix, ret;

ret : 0;
for (1x : 0; ix < to; ix : ix + 1-)

rec:ret+ix;
return ret; /* return function's value */

) /* sum *,/)

1.5 Calling a Function
Function which does not retum a value can be called by simply writing the function name and

giving it arguments (if any). And if the function returns a value, it can be used like any expression.

For example

I ai cnl rrr nrac

1 st ^*1-., --^r.
-. uaD1,ray-vor.fe (X) ;

3. ncr = fact (n) / (fact (r\ * fact (n-r)) ;
4 n.o^f aqf = prr, /a *r,, / - L\ \ .\J-eursru - rtld^ \Ur Lrtq^\4, Pl L

1.6 Some lmportant Features of Functions
i. The structure of a function definition is like the structure of "main$", with its own list of

variable declarations and program statements.

ii. A function can have a list of zero or more parameters inside its brackets, each of which has a
separate type.

iii. A function has to be declared in a function declaration at the top of the program, just after any
global constant declarations, and before it can be called by "main0" or in other function
definitions.

iv. Function declarations are a bit like variable declarations - they specify which type the function
will return.

v. A function may have more than one "retum" statement, in which case the function definition
will end execution as soon as the first "retum" is reached. For example

double absolute_value (double number)
{ if(number >: O)

return number;

return 0 - number;
i

4.7 How a Function Works?
A C++ program does not execute the statements in

called. When the function is called, control passes to the
lltcr the execution of function is over.

a function until the function is invoked or
function and returns back to the calling part

ffi OOP with C++ Functions in C++
o,

utfl0i

The calling program can send information to the functions in
An argument stores data needed by the function to perform its task.

information to the program in the form of a retum value.

Following program explains the working of function:

the form of argument.
Functions can send back

inc l-ude< i os tream>
using namespace std;
'inJ- :ddiJ. inn/int ^ ih!urvrr \rrr! a, IllU

i i-nt r;
r:a+bi
ral-rrrn /r\ .

rr \! / t

]
int maln ()
I i ht-
I Lrre -t

z = addition(5,3);
cout << rrThe result is
return 0;

]

b) / /declaration of a function

/ /r-.a1.1 inr^l : frrncljgpl
,, << zi

Output:

) Explanation

We know that every C++ program always begins its execution from the mainfunction. So we will
begin from main.

In the main function we have, first declared the variable z of type int. Then a call to a function
named additionQ is made. If we pay attention we will be able to see the similarity between the
structure of the call to the function and the declaration of the function itself in the code lines above:

int addition(int a, int b);tt
z=addition(5 , 3);

The parameters have a clear conespondence. Within the main function we called the additionQ
passing two values: 5 and 3 that correspond to the int a and int b parameters declared for the function
addition.

At the moment at which the function is called from main, control is lost by main and passed to
function addition. The value of both parameters passed in the call (5 and 3) are copied to the local
variables int a and int b within the function.

Function addition declares a new variable (int r;), and by means of the expression r=a+b;, it
assigns to r the result of a plus b. Because the passed parameters for a and b are 5 and 3 respectively,
the result is 8.

The following line of code:
raf rrrn /r\.

LL \L
' '

o,
uFtotl OOP with C++ Functions in C++

Finalizes function addition, and returns the control back to the function that called it (main)

following the program from the same point at which it was intemrpted by the call to addition. But
additionally, return was called with the content of variable r (return (r);), which at that moment was

8, so this value is said to be returned by the function.

int addition(int a, int b);
I

l8
z=addition(5 , g)'

The value returned by a function is the value given to the function when it is evaluat,ed.

Therefore, z will store the value returned by addition (5, 3), that is 8. To explain it another way, you
can imagine that the call to a function (addition (5,3)) is literally replaced by the value it returns (8).

The following line of code in main is:
cout << ttThe result is " << z,

That, as you may already suppose, produces the printing of the result on the screen.

Considcr another example of functions:

E:Ig

/ / function example
#include<iostream>
using namespace std;
int subtraction(int a, 1nt b)
J inl- r.
I 4rru ! t

r:a-b;
raf rrrn /r\.

LL \L

' 'i
i -+ --i - / \rrru t[qrrr \,,
{ int x=5' Y=3, z,

z : subtraction (7 ,2) ;
cout << rrThe first result is tl

cout << I'The second result is "
cout << t'The third result is It

z:4 + subtraction(x, y),
cout << ttThe fourth result is "
return 0;

l

<< z <<'\nt;
<< subtraction(7, 2)

<< subtraction(x, y)

<< z << t\nt;

Output
The first result is 5

The second result is 5

The third result is 2

The fourth result is 6

In this case we have created the function subtraction. The only thing that this function does is to
subtract passed parameters and to return the result.

OOP with C++ Functions in C++
o"

utfl0tl

Nevertheless, if we examine the function main() we will see that we have made several calls to
function subtraction. We have used some different calling methods so that you see other ways or
moments when a function can be called.

In order to understand well these examples you must consider once again that a call to a function
could be perfectly replaced by its return value.

For example: The first case (that you should already know because it is the same pattern that we
have used in previous examples):
z = subtraction ('7 ,2) ;
cout << ttThe f irst result i_s " << z;

If we replace the function call by its result (that is 5), we would have:
ry - tr.

cout << rrThe flrst. result i_s rr << z;
As well as,

cout << "The second resuLt is " << subtract.ion(7, 2);
has the same result as the previous call, but in this case we made the call to subtraction directlv as

a parameter for cout. Simply imagine that we had written:
cout << I'The second result j-s " << 5;

since 5 is the result of subtraction (7,2).

InthgCaSgOf, cout << "The third resul-t is " << subtractlon(x,y);
The only new thing that we introduced is that the parameters of subtraction are variables instead

of constants. That is perfectly valid. In this case the values passed to the function subtraction are the
values of x and y, that are 5 and 3 respectively, giving 2 as result. The fourth case is more of the
same. Simply note that instead of:

z = 4 + subtraction (x, y) ;
we have puti z = subtraction(x, y) + 4;

with exactly the same result. Notice that the semicolon sign (;) goes at the end of the whole
expression. It does not necessarily have to go right after the function citt. ttre explanation might be
once again that you imagine that a function can be replaced by its result:

z:4+
z:2+

1.8 Functions with no types - The use of void
If you remember the syntax of a function declaration:

rcittrn j- tzna ftrnni- i nn nama / 1 i cl- nf n:r:mal-orc I .!r_uJys !ulreLrvll_trarLlE (aIDL L

You will see that it is obligatory that this declaration begin with a return-type, that is the type of
the data that will be returned by the function with the return instruction. But what if we want to
return no value? Imagine that we want to make a function just to show a message on the screen. We
do not need it to retum any value, moreover, we do not need it to receive any parameters. For these
cases, the void type is used.

o,
u$0tl OOP with C++ Functions in C++

tEitg

/ / void function example
inc Iude< ios tream>
using namespace std;
voj-d dummyfunction (void)
{ cout << 'rI'm a function!"; }

int main ()

{ dummyfunctlon O ;
return 0;

] i-fll
!LJI

g

Output: I'm a function!

Although in C++ it is not necessary to specify void, its use is considered suitable to signify that it
is a function without parameters or arguments and not something else.

We know that calling a function includes specifying its name and enclosing the arguments

between parenthesis. The non-existence of arguments does not exempt us from the obligation to use

parenthesis. For that reason the call to dummy function is
i"*-"€"*afian/\.uulturrY!urruLrvfr \ / t

This clearly indicates that it is a call to a function and not the name of a variable or anything else.

2, Passing lnformation - Parameters
Parameters are a means of communication between the calling function and the called function.

Parameters are of two types depending upon where they are used.

i. Actual Parameters: These are the variables or values used in the function call (or refetence

point). Actual parameter can be variables, constants, literals, expressions.

ii. Formal Parameters (Dummy parameters): These are the variables used in the function

header in the function definition. Formal parameters have to be variables.

Methods of Passing Parameters
Parameters to afunction may either be pass by value or pass by reference.

i. Pass by Yalue

If parameters are passed by value, only a copy of the variable has

been passed to the function. Any changes to the value will not be

reflected back to the calling function.
For example: Suppose that we called our first function addition using the following code:
int x=5, y=3, z:2;
z : addition(x, y);
What we did in this case was to call function addition passing the values of r and y, that

means 5 and 3 respectively, not the variables themselves.

.,llllthpC$ ol Pa.r*lt!g,.,
:Parmgters:'':

.:i,,,F bylvalue''' .
' ii;:'Faso b,- ref€rence,l

,.,|ii:: Flehrn by reterence

int addition(int a, int
A
ls

z=addition(x ,

This way, when function addition is being called the value of its variables a and b become j
and 3 respectively, but any modification of a or & within the function addition will not affect
the values of x and y outside it, because variables x and y were not passed themselves to the
function, only their values.

But there might be some cases where you need to alter the values of the original variables.
For that purpose we have to use arguments passed by reference.

Pass by Reference

A function that uses call-by-reference arguments reflects changes to the values of the
arguments to the calling function. ln traditional C, this is achieved by passing the address of
the variable, and using pointers to de-reference the arguments. C++ introduies a reference
operator (&), that allows true call-by-reference functions, eliminating the need to dereference
arguments passed to the function.

The reference operator is placed before the variable name of arguments in the parameter list of
the function. The function can then be called without passing the address, and without
dereferencing within the function. The following example contains a function to swap two
values. As the values require changing in the calling function, the values are passid by
reference.

// passing parameters by reference
inc lude<i ostream>
using namespace std;
void duplicate(int& a, int& b, 1nt& c)
{

ax=2 i
b*=2;
c*=2 i

]
int main ()
{

int x:1 , y:3, z=7 1

dupli-cate (x, y, zl ;
COUI << ttX:n << X <<rt, y=tt ((y ((tt, Z=r, 1<.Zi
ral- rrrn O.rvvg!r] v,

Output: x=2,y=6, zFI4
The first thing that should call your attention is that in the declaration of duplicate the type of
each argument was followed by an ampersand sign (&), that serves to specify that the variable
has to bepassed by reference instead ofbyvalue,as usual.

b);

1u
v);

lt.

O"
ut$0tl OOP with C++ Functions in C++

When passing a variable by reference we are passing the variable itself and any modification that
we do to that parameter within the function will have effect in the passed variable outside it.

void dupllcate(inl& a, int& b, int& c);

ttt
lx l1t lz

duplicate(xi, yt ,lrt
To express it another way, we have associated a, b and c with the parameters used when
calling the function (a y and 3) and any change that we do on a within the function will affect
the value of x outside. Any change that we do on b will affect y and the same with c and z.
That is why our program's output, that shows the values stored in x, y and e after the call to
duplicate, shows the values of the three variables of mnin doubled.
If when declaring the following function:
void duplicate(int& a, int& b, int& c)
We had declared it thus:
void duplicate(int a, int b, int c)
that is, without the ampersand (&) signs, we would have not passed the variables
by reference, but their values, and therefore, the output on screen for our progfttm would have
been the values of x, y and z without having been modified. 4
This type of declaration " by reference" using the ampersand (&) sign is exclusive of C++.
In C language we had to use pointers to do something equivalent. Passing by reference is an
effective way to allow a function to return more than one single value. For example: Here is a
program that returns the previous and next numbers of the first parameter passed.

Eltg

/ / more than one relurning value
#include<iostream>
using namespace std;
t'^ i .l he^'-n^.,+ / .i

^+ ., i ^+v vru y! s v rrslL l rrrL X7 l-nE& pf eV, int& next)
I
' Prev : x-1;

next : x+1;
]
int main ()

{

1nt x=100, y, zi
prevnext (x, y, z) ;
cout <("Previ-ous=rr
ret.urn 0;

]

((y ((", Next=rt << zi

fr:flilJl

-Output: Previous = 99, Next = 101

iii. Return by Reference

A function can also return a reference. consider the following function:
int & minx(int &x, int &y)

ffi OOP with C++ Functions in C++
o,

ur$0i

{ if (* . y)
return x;

el se
return y;

)

Since the retum type of min$ is int &, the function returns reference to x or y (and not the
values). Then a function call such as min(a, b) will yield a reference to either a and b
depending on their values. This means that this function call can appear on the left hand side
of an assignment statement. That is, the statement
min (a, b) - -t;
is legal and assigns -1 to a if it is smaller, otherwise -1 to b.

3. Default Arguments
When declaring a function we can specify a default value for each parameter. This value will be

used if that parameter is left blank when calling to the function. To do that we simply have to assign
a value to the arguments in the function declaration. If a value for that parameter is not passed when
the function is called, the default value is used, but if a value is specified this default value is stepped
on and the passed value is used.

/ / default values in functions
inc lude<ios tream>
using namespace std;
int divide(int a, 1nt b:2)
J i nf
t !1rs !,

r:a/b;
r6t- irrh /r\. 1tt \L t ,)

int main ()

{ cout << divide (1"2) ;
nnrrf zz arA1.\ \ v]rgJ,

cout << divide (20,4) ;
return 0;

) frTt
tlJl,:

Output: 6
5

As we can see in the body of the program there are two calls to the function divide.In the first
One: divide (12) ;

We have only specified one argument, but the function divide allows up to two. So the function
divide has assumed that the second parameter is 2 since that is what we have specified (notice the
function declaration, which finishes with int b=2). Thercfore the result of this function call is
6 (12n).

In the second call: divide (20, 4)

There are two parameters, so the default assignation (int b=2) is stepped on by the passed
parameter, that is 4, making the result equal to 5 (20/4).

O"
ur$0rl OOP with C++ Functions in C++

A default argument is checked for type at the time of declaration and evaluated at the time of call.
Only the trailing arguments can have default values.

It is important to note that we must add defaults from right to left. We cannot provide a default
value to a particular argument in the middle of an argument list. Some examples of function
declaration with default values are

int first:O, int second:O, int third=O); / / valid
int first, int second:O, int third=O); // valid

void func1
void func2
void func3
void func4
void func5
void func6

int first, int second, third=O);
int first, int second, int third);
.in+ tir.+ - n inf qanand\lllL !Mu - vt !I.- -'i nf firet : O, inr qacnnd

/ / valid
/ / vatid
/ / invat.id

inr rhird: 0); // inva1id
The default arguments are used to add new parameters to the existing functions and also used to

combine similar functions into one. Default arguments are useful in situations where some
arguments always have the same values.

4. Constant Arguments
The keyword const can also be used as a guarantee that a function will not modify a value that is

passed in. This is really only useful for references and pointers (and not things passed by value),
though there's nothing syntactically to prevent the use of const for arguments passed by value.

Consider the following functions:

int strlen(const char *p);
in1- I anaf h /cnnqt qf ri na f.<\ .

The qualifier const tells the compiler that the function should not modify the argument. When this
condition become false the compiler will generate an enor.

5. Function Overloading
C++ allows both functions and operators to be overloaded. An overloaded function, is a function

with the same name as another function, but with different parameter types, that means you can give
the same name to more than one function if they have either a different number of arguments or
different types in their arguments. This promotes programming flexibility. Overloaded functions
allow the following:

i. Use the same function name

ii. Carry out operations using different data types

For example: Suppose we were required to find the product of two numbers, either of which may be
of type int or double. A1l we would have to do is write four functions, each with the same name and
define to ensure that we get the coffect result, regardless of the types of the arguments we use in the
lunction call. The appropriate function is selected depending on the data types of the parameters.

ffiffi OOP with C++ Functions in C++
Or

ut$0i

The following is the function prototypes:
inf nrnArraf /.inf v inf rr\.

}/!vqqvu \llru ^,
LtLw I, ,

rlnrrl'r]a hrn.llr^l- /inf v dnrrhla rr\.
\!1r9 :r/ gvgvlv

J /

'double product (double x, int y) ;
double product (double x, double y) ;

The compiler will then choose the appropriate function. From a readability point of view,
function overloading should only be used when the functionality is the same.

Overloadedfunctions must adhere to the following two rules:

a. The compiler does not use the return type of the function to distinguish between function
instances.

b. The argument list of each of the function instances must be different.
The following example overloads a divide function for integers, and floating point numbers.

tT:it
tLil

/ / overloaded function
#include<iostream>
using namespace std;
int divide(int a, int b)
{

16l-r1rn /a/l-r\.rt \st pt,

l
fln:f dirrirlo/fln-r ^ €1^^+ L\

\ !rvaU qt laUqL U,

t
rol- rrrn /r /h\ .

rr \4t pt f

l
ini. m:in{}
{

int x:5, y=2;
float n:5.0, m=2.0;
cout << divide (x, y) ;
cout <,< " \n" ;
cout << di-vide (n, m) ;
cout << tt\ntt ;
return 01

)

0utput
2
2.5

In this case we have defined two functions with the same name, but one of them accepts two
arguments of type int and the other accepts them of type float. The compiler knows which one to call
in each case by examining the types when the function is called. If it is called with two ints as

arguments it calls to the function that has two int atgvments in the prototype and if it is called with
two floats it will call to the one which has two floals in its prototype. For simplicity I have included
the same code within both functions, but this is not compulsory. You can make two functions with
the same name but with completely different behaviors. Following is another example which
overloads a swap function for integers, and floating point numbers.

Or
utSt0fl OOP with C++ Functions in C++

ti=it
[_llx

incl-ude< io s Lream>
using namespace std;
/ / Overload the swap function for int and fl-oat
void swap(int &a, int &b);
voj-d swap(f Ioat &a, f1oat. eb) ;
int main ()

{

rrrL JJ - J, L-
-

J,

fl-oat f1 :3.1.41-59f, t2:7.23f;
cout << rtlntegers before swap:" << endJ-I
cout << i1 ((tt, " << i2 << endl;
swap (i1,, i2) ;
cout << rrlntegers after swap:'r << endll
cout << i1 ((tt, u << i2 << endl;
couL << tfFloating point.s before swap:r' << endl.
couL << f1 ((tt, tt << f2 << endLi
swap (f1, f2) ;
cout << trFJ-oating points after swap:rt << endlp
cout << f1 ((tt, u << f2 << end.l_i
return 0i]

/ / An i niaaar qr^r:n frrnai- i nn

voi-d swap(int &a, j-nt &b)
t

i6f l^h^
-l-ItL LemP : ai

a:bi
b : temp;
return; l

/ / en over.l-oaded f loat swap function
void swap(float &a, float. &b)
{

f l-oat temP = a '
a=bi
b : temp;
r6l-11rn.rvuq!1rt

)

0utput
Integers before swap:

15
Integers after swap:

5?
Floating points before swap:

3.14159f ,1.23f
Floating points after swap:

t.23f ,3.14159f

ffi OOP with C++ Functions in C++
o,

ur$0rl

6. lnline Functions
In the C language, the macro substitution directive (#define) allows us to define a macro whose

value is substituted in place of the macro name in the program. A macro can also have parameters.

The following example defines an argumented macro called SQR.

define SQR(x) (x)*(x)

The advantage of using a macro is that whenever the name SQR appears, it will be replaced by its
value. Hence, the execution will be faster. This is ideal when the code is small. However, macro's
are not compiled which can lead to errors. Instead of a macro, we can define a function called sqr

which will perform the same task as above. However, function calls and returns add to program

overheads.

C++ provides the facility of making a function inline. Any function declared using the keyword
inline will be expanded inline, i.e., the function code will be replaced at the point where the function
is called. The inline directive can be included before a function declaration to specify that the

function must be compiled as code at the same point where it is called. To make an inline function,
the keyword, "inline" precedes the function prototype and function definition. This is equivalent to

declaring a macro. Its advantage is only appreciated in very short functions, in which the resulting

code from compiling the program may be faster if the overhead of calling a function (stacking of
arguments) is avoided.

The format for its declaration is:

inLine t name (arguments \ J i nel- rrr^f i
^nq. I tr.ruu!

and the call is just like the call to any other function. It is not necessary fo include the inline
keyword before each call, only in the declaration.

Functions containing the following would not be suitable for an inline function:
a. Static variables

d. Arrays
b. Iteration constructs

e. Recursive calls to istelf.
c. A switch statement

The following example uses an inline function to determine if a given year is a leap year. If the

request is successful, the function definition will be expanded in the main part of the program,

eliminatine the need for a function call.

lra!
il_lt

#include<iostream>
using namespace std;
/ / P-atrlt\/nF der:laf ation
inline int leap (int year) ;
int main ()

i int year;
cout << ttEnter a year : tt;
cin >> yeari
if (leap (year))

cout << ttThe year rr << year
al ca

cout << ttThe year tt << Year
return 0; l

/ / Definition of leap

<< tt i-s

<< tt is

a leap year" << endl;

not a leap year" << endl;

O"
utdotl OOP with C++ Functions in C++

inl ine ini 1c:n/jp!*]]9 +vqts \

{ if(((year ? 4)
ral- rrrn "l .

return 0i
]

year)

0) && (((year g 100) 0) I I ((year?400)::0)))

,li]

Difference between Inline Function and Macro [Oct. 2011 sMl

7. Recursiye Functions
Recursivity is the property that functions call themselves. It is sometimes called circular

definition. It is useful for tasks such as some sorting methods or to calculate the factorial of a
number. For example: To obtain the factorial of a number (n) its mathematical formula is:
n! = n * (n-1) * (n-2) * (n-3 1 .., * 1

more concretely, 5! (factorial of 5) would be:
5! : 5 * 4 * 3 * 2 * I -_ 1-20

and a recursive function to do that could be this:

Ell
=
/ / facLorial- calculator
inc Iude< ios tream>
using namespace std;
'lana €ra+^-.i-! /lnna :\!urry !oULv!fqf \rvrr:j q,l

'if /: > 1\
rAf rrrn la * €ar|. nrial /r-1 \ \.Le! \s L | | t

lI.5e

itiiililri$i+iii+i tiiiiifi',i' ili{t'r11i6

i.

Inline function is the optimization technique used
by the compilers. One can simply prefix inline
keyword to function prototype to make a function
inline. lnline function instructs compiler to insert
complete body of the function wherever that
function got used in code.

A macro is a fragment of code which has been
given a name. Whenever the name is used, it is
replaced by the contents of the macro.

lt.
lnline functions lollow all the protocols of type
safety enforced on normal functions.

Since we don't specify the type with macros, type
safety is not enforced.

ilt.
Expressions passed as arguments to inline
functions are evaluated once.

In some cases, expressions passed as arguments
to macros can be evaluated more than once.

lv,
Inline functions are parsed by the compiler directly
instead of the preprocessor.

The C++ preprocessor implements macros by
using simple text replacement.

V.
Debugging inline function is as easy as debugging
a normal function.

Debugging macros is difficult. This is because the
preprocessor does the textual replacement tor
macros, but that textual replacement is not visible
in the source code itself.

OOP with C++ Functions in C++
o.

util0tl

return (1);)
int main ()

{ long 1;
cout << rrEnter a number: " I
cin >> li
cout << L << "!" << n - tr << factorial(I);
return 0;

j

Output
Type a number: 9

9! = 362880

When factorial0 is called with an argument of l, the function returns 1, otherwise it returns the

product of factorial (a-l)xa. To evaluate this expression, factorialO is called with a-1. This happens

until a equals I and the calls to the function begin returning. Notice how in function factorial we
included a call to itself, but only if the argument is greater than 1, since otherwise the function would
perform an infinite recursive loop in which once it anived at 0 it would continue multiplying by all
the negative numbers (probably provoking a stack overflow effor on runtime). This function has a

limitation because of the data type used in its design (long) for more simplicity. In a standard
system, the type long would not allow storing factorials greater than l2!. When a function calls
itself, a new set of local variables and parameters are allocated storage on the stack, and the function
is executed from the top with these new variables. A recursive call does not make a new copy of the
function. Only the values being operated upon are new. As each recursive call returns, the old local
variables and parameters are removed from the stack and execution resumes at the point of the

function call inside the function.

Solved Programs
1. 'Writea

function ll .-)': which takes- asinCte' ihtegeigilm+ht'i,he,lghtiI
and displays,a "pyramidi of',this height madeup'of,t'xt1'

"*racters,Cn.,the,screo4.tfe$'the function'witfrd simple,"driverit, proCr-,'which shoutd,be,,ab,lC.io rep.ro uce l

lf;rtlff:#ple
outpud rhis pqwramBilnts a lpyramidi shape'of.a spgbified,fieisht,

##'

5[7ugi6n.: ;,,.,,,t,, , .-,: ,, .. I , ..,,

i;'if;*,l'iiil$liE'li;r, ",.'

o.
utEt0tl OOP with C++ Functions in C++

i.,iilc,or'l+q.,''.f rr]l4,tdp€c{frd:gd. heighif,.ion,.,ihei,scre-e1r,,-t'n\ul'.;,.-..,

'ifl, 'heishth

"'33,H,ti'ila,lif :.'x*ffi';fiI litffiit"t

;i,...:.1 'i,,'.

"*6git+niqg;t4,;,,iE,fi,i iffi$dfiiliiii:;''-t"'';t'..f;il'*t*!
*fn'tor'"'#,fr.l'irl'i--ilfr'f

fiif;#Efr fl i'.Iir '{,,,ou,li *+bi!''o:'r*
"1.'1"fi i,il'u;;*iiflffi ;igi*t'''{ erpe.' bi 'Y. r '''i'i+ soi -:

Tl"ii

'',f+t* v,;!;i v ; *i a:r.u'iJait';
i.'.'.-,.:.i;:.i

il;I*

";;i;"$;'*"*ii
i ili' -;in*i)r:ir.t..:.';.1.,

.,f'-e.tlu*,n,0

$$gff+$*$i*iJ*i' ,

;;t{# ,x';i'Ili:i-1fiffi ;t' ;ff ffi i;t+*

ffiii:r,ft*u*il,1f*$:u*ni n,'*li;'o*""ii""a,

{.
".'c'I

b a}i,,,mt1a,u{fi b e i, r'l
f nt:,:rny'*g*er ri.:;,'r.:.......,..,

tr.t i
:.: l.e*n;.'. , ru!t-l 'fi$.f+,fi Hfr 'Effi ,ii*!*'ii'tl'o*;'.''. o.li,'li.i*.<i,.mV b#er+

+but,:, *o,r''n l+F ,r,' 5S, rensr€-d.rt,o. ower.1rny,*nurnberl" ,.my,]b.dwer.);j.,
r etultn,fi ,.,Ij. i.;.,r",i.:;rf i..,i'i ij

f r ;T :#"iJ.ojt# p*t*. it''iu*oe *;, i nr, p o*i"j

exit (x |,;', '| ;1',,;.i

r'..ii,i

' t' Ll",Tii*',ir';ti'##*,iir"ni .; *:n;u,;r;#ii;i,

ffi OOP with C++ Functions in C++
O"

tftStoi

';l**iffigttt , mtu
"'p.

i ili fl:ffi,tfut'."?n*tutnt

Hi{t*tnffi"u"'rot'ttillu
.tl.u
'4,,

'!ii
n9f.!fr,#i;.. , .', ,

atLn4' .,. :.. , .,,
'

tlrrt r',-t,li,Srtlb'
s 3 ggFtBE1++a);
d - r-qlr-rrc (+,l,hl ;,.
COrtt <* C:<<, ltdl
fltusa Ai.','..,,:::',,, l

;:i;

o"
utiloi OOP with C++ Functions in C++

f,J.oet..w,i.
'

lt
';,:;;nn"t

t
*uiJ't

OOP with C++ Functions in C++
O"

utfloi

'i'.i$iii"fffif;$f;l*$'

=ffi.

6; $pi1B,t toid .'r,;i.;"..,,.

sotutm',| .'."i,'iir;f iilili;ffitffttu.itu.tlitt =to iiiir'iii;li'itffi

f x:rffi :tf i,r*ifi l*t**u'
l i i i +"fi vt i;;';i*i-'r,, fi "'

i.,''--., '1tii '"f 'iff
;to=ooi,:l,lf.:|.'.''''|aou'1rr.r.i.,it.iii.'i;riit -ti1i'"..tiit;i;

' ;;; 1 61ii,i .;,,.','i' .i,',,:','r'fi ifi tfii,i"
1o'0,;,i 11:,

nlj:,rt,t't..t,-',
r,.i,r.'";*tri

'.'-'t"u,,,'' i' i'r" .i'i.,i.',,I.irLii

,iigt*liiffitffi"-*;ii'-iffi
,,i

t

Mirclass,{: lnt,'i]l. r,i-.,;.:,tr''' i :r'l ii.i ri,

'' **;fft- ".","ttt;tt
r
' '-1 '"tfi.."ttt ttiii'*i 1'tta'l'ioiai.ttl.

'o-$o*iril'iin'*r'iitiifi
;***i";ii*tii -

, "
***"4r.'tt:-!i'r t"

',,
'"'ri'i -i-tttoiitittlttliulii

tnll,i
i'*-'nunni,,l,ll

tt 1'.'...' '-fi -iii-rillttt'tt til",t'
int.'rtai''i1t....''.'..''''........'.'.l..''.j.......i..'.i....ii';i''.i,''l''ii.;.''.ii..'.i'..l;;..i.i.'1if#.ji#.l.o#,r.,ii' t;i;ilitllii;;iLi.;,.'ri;r{,;l

i":, t: -iil.i'- " "''fit.ii.li'ii..'.
tiliiti*iiii'li'

""n*nfuiffi

f.et:Uf.n

Or
ur$0rl OOP with C++ Functions in C++

ExeRctsEs
A. Review Ouestions

1.

2.

3.

4.

6.

7.

B.

What is function? List out advantages and disadvantages of using functions in C++?

How a function is declared in C++?

What is meant by call by reference and call by value?

What is the purpose of return statement?

Explain how a static member is defined and declared in C++.

What is a static class member?

What is a recursive function?

Programming Exercises

1. Write a function in C++ to find the sum of the following series:

a. sum = 1+2+3+. . .+n

b. sum = 1+3+5+. . .+n

c. sum=12+ *+22+...+n2
d. sum = 13+33+53+. . .+n3

Write a function in C++ to generate a Fibonacci series of 'n' numbers, where n is defined by a
prograrnmer.(Theseriesshouldbe:l t 2 3 5 8 13 21 32...).

Write a function in C++ to generate the following pyramid of numbers.

101
2t o 12

3210 L2 3

432L 0123 4

4. Write an object-oriented program in C++ to read any five real numbers and print the average

using a static member class.

2.

3.

o"IeWi

ul8t01l

losses And Ob

l. Introduction
The word "class" is the most important feature of C++. It's significance is highlighted by the fact

that Stroustrup initially gave the name "C with classes" to his new language. A class is an extension

of the idea of structure used in C. It is a new way of creating and implementing a user-defined data

type.

A class is a logical method to organize data and functions in the same structure. They are declared

using keyword class, whose functionality is similar to that of the C keyword struct, but with the

possibility of including functions as members, instead of only data.

Structures and Classes

C++ language has extended the role of the structure, making it an alternative way to specify a

class. Since both class and struct have almost the same functionality in C++, struct is usually used

for data-only sffuctures and class for classes that have procedures and member functions.

A structure contains one or more data items called members, which are grouped together as a

single unit. On the other hand, a class is similar to a structure data type but consists of not only data

elements but also functions, which are operated on the data elements. Secondly, in a structure, all the

elements are public by default while in a class all the elements are private by default. In all other

respects, structures and classes are equivalent.

The presence of two virtually equivalent keywords struct and class can be justified for various

teasons. Firstly, to increase the capabilities of a structure by allowing them to include member

(/o
5 o 1 Ultl0i

OOPwith C++
O"

utEt0tlC/asses and Objects

functions. Secondly, to make porting easier between C and C++. Finally, providing two different
equivalent keywords allows the definition of a class to be free to evolve. For C++ to remain
compatible with C, the definition of struct must always be tied to its C definition.

2. Class
A class is a user defined data type, which binds the data and its associated functions together. It

allows the data (and functions) to be hidden, if necessary, from external use. The internal data of a
class is called member data (or data member) and the functions are called member functions, Only
the member functions can have access to the private data members and private functions. Howevei,
the public members (both data and functions) can,be accessed frorn outside of the class. The
variables of a class are called objects or instances of class.

The generalform of a class declaration is:
cl:q< nama

permi s s i-on_labe L_l_ :
momharl.

permission_labeL_2:
maml.ra r 2 .

obiect l-ist;
The above class can also be created using the "struct" keyword as shown below.

ttntct class_name fpermission_labeI_1:
member 1_;

permission_tabel_2:
member2 I

;oUiect'fist;
where class-name is a name for the class (user defined type) and the optional field object list is

one, or several, valid object identifiers. The object list is optional. The body of the declaration can
contain members, that can be either data or function declarations, and optionally permission labels or
access specifiers, that can be any of these three keywords: private:, public: or protected:. They make
reference to the permission, which the following members acquire:
i. Private: The members, which are declared in the private section, can be accessed only from

within the class, i.e.. by the member functions of their same class and friends of this clais. The
member functions and friends of this class can always read or write private data members. The
private data member is not accessible to the out of the class.

ii. Protected: The members in the protected section can be accessed by the member functions
and friends of this class, and also frorn member functions and friends derived from this class.
It is not accessible to the outside world (out of the class).

iii. Public: The members declared in the public section can be accessed by any function in the
outside world (out of the class). Public data members can always be read and written from
outside this class. A member function can be inline, which means that member function can
be defined within the hody of the class constant.

O.
utEt0tl OOP with C++ C/asses and Objects

The default member access of a class created using class keyword is private and using struct
keyword is public.

For example
class CRectangle
{

i-nt x, y;
public:

rrnid <ot 172 lrraa/in+ inf \.
- -_. -IUgD \ lrrl, IlrL,/,

int. area (void) ;
] rect;

In the above example, CRectangle is the class name and rect is an object of this class (type). This
class contains four members: two variables of type int (x and y) in the private section (because

private is the default permission) and two functions in the public section: set-values} and area0, of
which we have only included the prototype.

The dffirence between class narne and object name: In the above example, CRectangle is the
class name (i.e., the user-defined type), whereas rect is an object of type CRectangle. Is the same
difference that int and a have in the following declaration:

int a i int is the class name (type) and a is the object name (variable).

In general, all data members of a class should be made private to that class so as to achieve
encapsulation. But, there may be situations where a variable would need to be declared public. The
protected access specifier is needed only when inheritance is involved.

2.1 Creating Object
Once a class has been declared, we can create variables of that type by using the class name (like

any other built-in type variable). For example
-P6^l- rna l a 16^l- . / / memory for rect is created.

The above statement creates a variable rect of type CRectangle. In C++, the class variables are
known as objects therefore rect is called an object of type CRectangle.

We may declare more than one object in one statement. For exnmple
t'-Donf rncla ranf raafh vaala.VngvUoII9Jg !sUL, !gUL!, lgUUU,

The declaration of an object is similar to that of a variable of any basic type. The necessary
memory space is allocated to an object at this stage. Note that class specification, like a structure,
provides only a template and does not create any memory space for the objects.

Objects can also be created when a class is defined by placing their names immediately after the
closing brace.

For example
class CRectangle
{ ---
I ranf raal_ l-r rdil.

^
.

J !!vu, rvvvv, !vvvvt

The above definition would create the objects of type rect, rectb and rectc of type CRectangle.

ffi OOP with C++ C/asses and Objects
o,

ur$0tl

2.2 Accessing Class Members
In the body of the program we can refer to any of the public members of the object as if they were

normal functions or variables, just by putting the object's name followed by the dot operator and then
the class member (like we did with C structs).

Syntax
Obiect name.functi ame (actual arguments) ;

For exarnple
class abc
I int- n(rrru }/, n,

nrrhlin.
'i n+ r.LLLW L

'
t,

:::
s.P : 0;
s.r = 20;

Outside the Class Definition
Member functions that are declared inside a class have to be
defined separately outside the class. Their definitions are very
much like the normal functions except that a member function
incorporates a membership 'identity label' in the header. This label
class the function belongs to.

The g eneral form of a member function deftnirton i s :

tells

return-type class-name : : functi_on-name(argument declaration)
I
t

frrnnt- i nn trnArr.vvqJ t

I

/ / arrar n i e n-itrrf a| | s!!v!r P !D P!avauY
//aV r ie nrrl-r]i- -- F*---c

In the above example, the statement s.p = 0 is illegal because p is the private member and they
can only be accessed by the members of that same class (for details see next section). In the next
statement s.r = 20; is valid since r is the public member and public members can be accessed by the
objects directly.

3. Member Functions
Member functions are the functions that are designed to implement the operations allowed on the

data type represented by a class. To declare a member function, place its prototype in the body of the
class. The definition of the function can be inside the class or outside the class but in the same file or
in a separate file.

Memberfunctions can be defined in two places:

t.

O"
ur$0tl OOP with C++ C/ass€s and Objects

The membership label class-natne :: tells the compiler that the function function-name
belongs to the class c/ass-nanrc. That is, the scope of the function is restricted to the class-
natne specified in the header line. The symbol:: is called the scope resolution operator.

Characterlstlcs of Member Functlons

The member functions have some special characteristics that are often used in the program
development. The characteristics are as follows:
a. The same function name can be used by different classes. The 'membership label' will

resolve their scope.

b. Member functions can access the private data of the class. A nonmember function
cannot do so (except friend function, discussed later).

c. A member function can call another member function directly, without using the dot
operator.

ii. lnside the Class Definition
Another method of defining a member function is to replace the function declaration by the
actual function definition inside the class.

When a function is defined inside a class, it is treated as an inline function (Rekr 1.6 in
chapter 4). Therefore all the restrictions and limitations that apply to an inline functions are
also applicable here. Normally, only small functions are defined inside the class definition.

A Simple Class Program

[ns Program for class
/ / class example
#include<i-ostream>
using namespace std;
class CRectangle {

int x, y, / / private by default
publi-c:

void set_values (int, int) ; / / Prototype declaration
int area(void) ireturn (x*y);I // function defined inside class

/ / i.e. , inline function
I,

// Member Function Definltion(Function defined outside of class)
void CRectangle::set_values(int a, int b)
t

x=ai
,, - l-.! - Pt

I
)

// !lfzin Drnnrrm
'inf main/\ I

/ / private variables
/ / di rer-t I rr rrsg6l

CRectangle rect, rectb; / / create objects rect, rectb
rect. set_vaLues (3,4) ; / / call- member function
rectb. set-values (5,6) ; / / call- member function
cout << rrrect area: rr << rect.areaQ << endl;
cout << trrecLb area: rt << rectb.areaO << endl;

mE!5

ffi C/asses and Objects
Q"

ut$0tl

This program features the class CRectangle. This class contains two private variables and two
public functions. The member function set-values0 is defined outside the class with the help of
scope resolution operator (::). This operator specifies the class to which the member being declared
belongs, granting exactly the same scope properties as if it was directly defined within the class.
For example: In the function set-values(), we have referred to variables x and y, that are members
of class CRectangle and that are only visible inside it and its members(since they Ne private).

The only difference between defining a class member function completely within its class and to
include only the prototype is that in the first case the function will automatically be considered inline
by the compiler, while in the second it will be a normal (not-inline) class member function.

The use of statement such as x = a;

In the function definition of set:valuesO shows that the member functions can have direct access
to private data items.

The member function area) has been defined inside the class and therefore behaves like an inline
function. This function displays the values of private variables x and y.

The program creates two objects rect, rectb. Note that the call to rect.areaQ does not give the
same result as the call to rectb.area). This is because each object of class CRectangle has its own
variables x and y, and its own functions set_value} and area).
Output

rcctarea: 12

rectb area: 30

Note: The reason why we have made x andy private members (remember that if nothing else is said
all members of a class defined with keyword class have private access) is because we have
already defined a function to introduce those values in the object (set-values0).and therefore
the rest of the program does not have a way to directly access them but in greater projects it
may be very important that values should not be modified in an unexpected way (unexpected
from the point of view of the object).

4. Making an Outside Function Inline
We can define a member function outside the class definition and still make it inline by just using

the qualifier inline in the header line of function definition.
Example

cfass CRectanqle
t

publit:
void set_values(int a, int b) //declaratlonj;

inline void CRectangle : : set_va1ue.s (int a, in b) ,/./def inition
{ x:a;

Y = b;)

AOP with C++

O"
ut8t0i OOP with C++ C/asses and Objects

5. Nesting of Member Functions
Nesting of member functions means a member function of a class can be call'ed by using its name

inside another member function of the same class. We know that a member function of a class can be

called only by an object of that class using a dot operator.

Following progam illustrates this feature. Program for nesting of member functions.

r-illttl

-# include< iostream>
using namespace std;
class min
{ int a,b;

public :
rzni rl aa.l. Ar+ r /rrai A \ .vvrq v9LgqLq \ vvru, ,
vold display (void) ;
int smallest (void) ;

t;
int min : : small-est (void)
t

if (a<=b)
rairrrn {e) .rr \q/ t

else
rol- rrrn thl .

tL\ul I

)

void min : :getdata(void)
{ cout << "Enter the values of a

cin>>a>>bi
]
void smallest :: display(void)
{ cout << rfThe smallest value is

<< "\n" ; / /ca:-.:.'ing member
)
inf main/l
{ min Mi

M getdata O ;
M.display () ;
roi rrrn O .! v e s! r1 v t

)

and b il<<il\nrr'

: rr<< small-est o
function.

Ir=il
ILJI

The output of a program is

Enter the values of a and b

36 16

The smallest value is 16.

ffi o,
utfl0tlOOP with C++ C/asses and Obiects

6. Private Member Function
Generally all data items are placed in a private section and all the functions in public section. But

in some cases it may require to hide certain functions (i.e., private data) from the outside class. To
handle this situation we can place such functions in the private section and such functions are called
as private member functions.

A private member function can only be called by another function which is a member of its class.
A private member function cannot be invoked by an object using the dot operator.

Consider a class defined below:

class vehi-c1e
I inl- rznnAa

void read(voidl; //private member function.
public:

void update (void) ;
void write (void) ;

I;
If vl is an object of vehicle class, then

vl.read () ; / / won 't work; objects cannot access private members.

is illegal, However, read0 function is a private member function so it can be called by a function
which is a member of its class, i.e., by updale0 function to update the value of vcode.

void vehicle : : update (void)
{ rcacl (\://simnlc r-nll: nn otriogl iS used,r lvsJg\t f | | vlLLtr' I rLe vpJs

)

7. Arrays within a Class
We can use array as a member variable within a class.

For example

const int size = 100; / /provides vafue for array size
class xyz
{ int a[size]; //'a' is int type array
public:

void setdata (void) ;
void displaydata (void) ;

I;
The array variable a[] declared as a private member of the class, can be used in the member

functions, like any other array variable. Any operations can be performed on it. For example: In the
above class definition, the member function setdata sets the values of the elements of the array a[],
and displaydataQ function displays the values. We can also use other member functions to perform
any other operations on the array values.

O"
0td0i OOP with C++ C/asses and Objects

8. Memory Allocation for Objects
Whenever the objects are declared, the memory space for the object is allocated and not when the

class is specified. This statement is only partly true. Actually, the member functions are created and

placed in the memory space only once when they are defined as a part of a class specification. Since
all the objects belonging to that class use the same member function, no separate space is allocated
for member function when the objects are created. Only space for member variables is allocated
separalely for each object. Since member variables will hold different data values for different
objects separate memory locations for the objects are essential. This is shown in the

followingfgure 5.1,

Common for all oblects
Member Function'l

Member Function 2

Memory created
when functions defined

Object 1

Member variable 1

Object 2
Member variable 1

Memory created
when obiects defined

Member variable 2 Member variable 2

Figure 5.1 : Memory allocation for oblects

9. Arrays of Objects
Any object, whether built-in or user defined, can be stored in an array. When you declare the

array, you tell the compiler the type of object to store and the number of objects for which to allocate
room. The compiler know how much room is needed for each object based on the class declaration.
The class must have a default constructor (for more details refer chapter 6) that takes no arguments
so that the objects can be created when the array is defined.

Consider the following class definition:
class vehicl-e
{ int vcode;

ch:r rrnrma | ?O l .
vr.qrLLeLvvJ,

public:
void getlnfo (void) ;
void di-sinf o (void) ;

ffi OOP with C++ C/asses and Objects
Or

udotl

The identifier vehicle is a user defined data type and can be used to create objects that relate to
different categories of the vehicles.

Example: vehicle v1 t3l ;
Vehicl-e v2l4l i

The array v1 contains three objects namely, v1[0], v1[1] and vll2l of type vehicle class.
Similarly, thev2 array contains 4 objects namely v2[0], v2[l,v2l2l andv2t3l.

Accessing member data in an iuray of objects is a two-step process. You identify the member of
the array by using the index operator ([]), and then you add the member operator (.) to access the
particular member variable.

For example: The statement v1 ti I . disinf o () ;

will display the data of the ifr element of the array vl. That is, this statement requests the object
vl[i] to invoke the member function disinfo$.

An array of objects is stored inside the memory in the same way as a multi-dimensional array.
The array vl is represented in the figure given below. Note that only the space for data items of the
object is created. Member functions are stored separately and will be used by all the objects.

vcode

vname

vcode

vname

vcode

vname

vl[0]

vl[1]

l v1l2l

)

)

Flgure 5.2 : Slorage of data ltems of an oblect array

|rN
tlJl]= Program for Array of Oblects
inc lude <ios tream>
using namespace std;
class vehicle
{ i nf rrnndo:

char vname[3O] i // String as cl-ass member
public:

void getdata (void) ;
void putdata (void) ;

\;
void vehicle : : getdata (void)
{ cout << "Enter the VehicLe

cin >> vcodel
cout << "Enter the Vehicle
cin >> vname;

]
void vehicle :: putdata(void)

Name:"I

O"
utSr0rl OOP with C++ C/asses and Objects

{ cout << "Code:"<< vcode << "\n";
cout << "Name:t'<< vname ((/'\nt'I

)
const int size :3i
.i *r *^ I "^ / \Jrtu tltd!rt U
{ vehicle v1 lsize] ; / /erray of object

for(int i:0; i<size; i++)
{ cout <<"\n Detail-s of Vehicl-e-" << i+l- << "\n'.;

v1 [i] .getdataO;
)
cout << "\n";
for(i=0; i<size; i++)
{ cout <<"\n Vehicle" << i+1 << "\n";

v1 [i] .putdata () ;
l
return 0;

) ti:it
I lL-Jl5

Input given to program
Details of vehiclel
Enter the Vehicle Code
Enter the Vehicle Name

Details of vehicLe2
Enter the Vehicle Code
Enter the Vehicle Name

Details of vehicle3
Enter the Vehicle Code
Enter the Vehicle Name

Output of the program
VehicleL
Code : 001
Name : Scooty
Vehicle2
Code : 002
Name : Scooter
Vehi-cl-e3
l-ada. nn?
Name : Hero Honda

001
Qannf rrevvv uf

002
Scooter

003
Hero Honda

| 0. Objects as Function Arguments
An object may be used as a function argument like any other data types. This can be done in

following two ways.
i. Pass-by-value, i.e., a copy of the entire object is passed to a function.
ii. Pass-by-reference, i.e., only the address of the object is transferred to the function.

In the first-method, a copy of the object is passed to the function, any changes made to the object
inside the function, do not affect the object used to call the function.

ffi OOP with C++ C/asses and Objects
Or

utit0rl

In the second method, when an address of the object is passed, the called function works directly
on the actual object used in the call. This means that any changes made to the object inside the

function will reflect in the actual object. The pass-by-referdnce method is more efficient than the

pass-by-value method since it requires to pass only the address of the object not the entire object.

Following program illustrates the use of objects as function arguments. If performs the addition
of two complex numbers.

#include<iostream>
.. _, - _ ^^ stdiuDItt9 trqr[eD},au9 D uq,
^1 -^^ ^^**1^.,urd-D uvlrLIJlsA

{
rt ^^+ -^^1 i*!!vaL LeaL, rrLld$i

public :
rrni rl ao1- ri:f a 1f I n-- -- 4r ^-! "\.---dL A7 !rUaL Y,
{

real- : x;;--- - ,,.rlla9 - y ,
)

void display (void) ;
{

cout << real << '+i n <<imag<<u\n";
void sum(complex, complex) ; / / dectaration with object as arguments

void complex:: sum(complex C1, complex Czl//CI, C2 are objects.
{

real = CL.real+C2.real-l
imag : Cl-. imag +C2 . imag;

)

int main ()

{

complex C1, C2, C3;
Cl.getdata(l-,1); // get Ct
C2.getdata(3,3) ; / /get CZ

C3.sum(C7,C2); // CS: Ct + CZ
cout << trc1 = , ' Cl.display0; // display C1
cout << nc2 = n ' C2.display0; // display C2
cout << 'C3 = " i C3.disp]ay{); // display C3

-^+"-^ n.rgLu!ll vt

)

Note: Since the member function sum() is invoked by the object C3, with the objects Cl and C2 as

arguments, it can directly access the real and imag variables of C3. But the members of Cl
and C2 can be accessed only by using the dot operator like Cl.real and Cl.imag. Therefore,

inside the function sum() , the variables real and imag refer to C3, Cl.real and Cl.imag refers

to those of C1 and C2.real and C2.imag refer to of C2.

We can also pass an object as an iugument to a non-member function. However, these functions

can have access to the public member functions only through the objects passed as an arguments to

it. These functions cannot have access to the private data members.

o.
utEtotl OOP with C++ C/asses and Objects

I l. Returning Objects
A function may retum an object to the function or caller. Following program illustrates how an

object is created within a function and return to another function.

irR
ILJIsProgram for returnlng oblecia iiom C tunctlon
inc l-ude< io s tream>
using namespace std;
class complex / / x+iy form
t t]^^+ -^^t :*t r.roaE. rear,]-mag;

publ ic;
void getdata(fl-oat x, f loat y)
{ real : x;

imag = Y;)
friend complex sum(complex, complex) ;
rra.j rl d.i cnl r" /aannl ^-\ .vvau qrol/rqy \uulrtPIsAr,

complex sum(complex C1, complex C2)
{ nnmn i ew C? : i / nl-rier-1- s f-? jg C1. eated.v,J ee

C3.x : C!.x+C2.x;
C3.Y = CL.Y+C2.Y;
return(C3); //reLurn object C3

)
void complex :: display(complex C)
{ cout (<C.x<<rr+i'?<<C.y<<"\nt';
)
int main ()
{ comp]ex P, Q, R;

P.getdata(6.1,3.1-);
Q.getdata (5.8,1.2l';
R:sum (P, Q) ; / /R=P+Q
cout << trP=tr' e.display(P);
cout << rQ:il. Q.display(Q);
cout ((trR:il . R. display (R) ;
return O;

)

Output of the Above Program
P = 6.1 +i3.1
Q = 5.8 +i7.2
ft = 11.9+i10.3
The ibove program adds two complex numbers P and Q to produce a third complex number R

and displays all the three numbers.

When an object is returned by a function, a tempor.ary object is automatically created which holds
the return value. It is this object that is actually returned by the function. After returning a value, the
object is destroyed. The destruction of this temporary object may cause unexpected side effects in
some situations. There are various ways to solve this problem one way is that define a copy
constructor, which will be explained in later chapter.

r.T
ILJI

-

OOP with C++
O"

utftotlClasses and Objects

12. Const Member Function
The const modifier becomes a part of the object type and also can be applied to user-defined

types:

For example
cl-ass Invoj-ce {

nrrl.r'l i n.
vsvrf v.

void giveDiscount(1nt d) {
/t...

]
\;
^n nei- Tnrrai na i .

+rr w v:vv r /

i ai rraf)i <nnrrnt- / \ .vs+vvvsrru \ / t

/ / a ranq1-^ni rreor-dafinad nhicc!
/ / error: ' i' is const

/ / declares a constant user-deflned obiect
/ / ok: Invoice: : sum () is const

Because Invoice::giveDiscountQ has the potential to alter the intemal state of the object, the
compiler refuses to let you invoke this member function on i, which is declared as const. However,
individual member functions themselves can be declared const, which tells the compiler that those
member functions do not alter the intemal state of the obiect and therefore are safe to invoke on
const objects. For example

cl-ass Invoice {
public:
1nt sum0 const { / / a constant member function
//...

)

dnh cl- Tnrrni na i .
f.rvv+vv +,

ini e : i qrrm/l:

C++ directly supports const as a language feature, so the compiler provides free compile-time
checking of const objects. With properly designed interfaces that utilize const member functions,
you are free to declare and use constant user-defined objects; only the const interface of those objects
will be available. It is much better to use const early and oft,en in your designs.

When designing const member functions, you may encounter a situation in which altering the
internal state of the class is necessary. For emmple

class Customerlnvoice : public Tnvoice i
public:
int sum0 const {

/ / calcuLate sum, and save for later
sumCache = items. size O + custftems. size O ;
return sumCache;

]

nraf aal- orl .

i ni- crrml'-:nha.
+.ru vgrlLvgvlrv,

/ / error

j,
In the above example, the value of sumCache cannot be altered, because Customerlnvoice::sum0

is declared to be const. However, we really do want to cache the value for later use; so how can this
be done? The answer is "with the mutable keyword", which is the converse of const when applied to
member variables. For example: Custornlnvoice can be corrected as follows:

O.
0rfl0rl OOP with C++ C/asses and Obiects

class Customerlnvoice : public Invoice {
nrrl" lia.

int sum0 const t
/ / calcuLate sum' and save for later
sumcache = items.sizeO + custltems.sizeO; // ok
return sumCachei

)

hr^fa^l-ad.
tsr v evv evs .

mutable int sumCache; // mutable member variable
It
Now, the compiler allows sumcache to be modified within the Customerlnvoice::sum0 const

member function because sumCache was declared to be mutable. The mutable keyword instructs the

compiler to accept changes to the variable declared with it, even in const member functions.

| 3. Static Class Members
A C++ class, as you well know, can contain data and functions. It turns out that both data and

function members of a class can be made static. Static members behave like ordinary members in
many ways. They obey the same C++ class access rules provided by the keywords public, private,
and protected. They are contained within the scope of the class, and do not include the global

namespace or names used in other classes. Finally, they must be accessed using the . or -> operators

to get inside the class scope boundary. However, unlike normal class members, static members may

be accessed directly by applying the :: scope operator to the class type name. It is not even necessary

that an object of the class to be constructed to access the static members.

| 3. I Static Data Members

A data member of a class can be qualified as static. The properties of a static member variable are

similar to that of a C static variable. A static member variable has certain special characteristics.

These are:
o It is initialized to zero when the first object of its class is created. No other initialization is

permitled.
. Only one copy of that member is created for the entire class and is shared by all the objects of

that class, no matter how many objects are created.

o It is visible only within the class, but its lifetime is the entire program.

Static variables are normally used to maintain values common to the entire class. For example: a

static data member can be used as a counter that records the occurrences of all the objects.

Following progrcm illushates the use of a static data member.

Eiig Program
include< ios tream>
using namespace std;

class item
i

static int count;
i nl- nrrml.rar.

nrrl-r'l i ^.l/uvrae.

void getdata(int a)
{

number = ai
count++;

i
void getcount (void)
i

cout << tt count : tt i
cout << count << tt\ntti

]

int item :: count;
int main ()

{
'il-am r hp, et
a nol_nnrrnf / \ .s.Yvevvsrrv\/ t
h cai- anrrnl- / \ .v t Yvvvvsrrv \ / /
d d6l-^^rln{. / \ .v.Yvuvvsrre\/t

a.gfetdata(100)
h -^rJ^!- /an n\u.gELqdLdlzuv,l
. dal-.lrf : /?Afl\vrYvess!e\vvvl

cout << "After
a d6l- anrrnf 1 \ .q.yvevvsrru\/t

h aai- nnrrnf rr \ .v . Yv evvqrr L \ / ,
a dal- nnrrnl- / \ .
v.:vvvv9l|u \ / ,

rol- rrrn fl.

/ / eounL 1s initlalized to zero
/ / display count

; / / geLting data into object a
. //na+|i6^ .l-f^ inl-a nh-ianf 1-., / / Ye uuItrV UALq frr!v vuJsuL !
. / / na* | i na A-+2 .i nf n ahiant- n| / / Y=V Urrrv udLs rrrLv vlJs9L I
reading datatt << tt\ntt;

// display count

Output
count: 0
count: 0
count: 0
After reading data

count :3
count: 3
count: 3

Note: Notice the following statement in the program:
int item: : count; / / definltion of statj_c data member

Note that the type and scope of each static member variable must be defined outside the class
definition. This is necessary because the static data members are stored separately rather than as a
part of an object. Since they are associated with the class itself rather than with any class object, they
are also known as class variables.

o"
urStotl OOP with C++ C/asses and Objects

The static variable count is initialized to zero when the objects are created. The count is

incremented whenever the data is read into an object, Since the data is read into objects three times,

the variable count is incremented three times. Because there is only one copy of count shared by all

the three objects, all the three output statements cause the value 3 to be displayed'

Following figure shows how a static variable is used by the objects.

Object 1

number

11001tl
\ -\\\\\

\ \\\\

count
(common to allthree obiects)

Sharlng of a statlc data member

Static variables are like non-inline member functions as they are declared in a class declaration

and defined in the source file. While defining a static variable, some initial value can also be

assigned to the variable. For instance, the following definition gives count the initial value 10.

int item :: count = 10,

| 3.2 Static Member Functions

Like static member variable, we can also have static member functions. A member function that

is declared statichas the following properties.

o d static fvnctron can have access to only other static members (functions or variables)

declared in the same class.

o A stotic member function can be called using the class name (instead of its objects).

Following program illustrates the implementation of these characteristics. The static functton

showcount(i displays the number of objects created till that moment. A count of number of objects

created is maintained by the static variable count.

The function showcode0 displays the code number of each object.

Er-ls Program uslng static member functlon
#include<iostream>
using namespace std;
class tesL

int codei
static int count, / / static member vari_ablepublic:

void setcode(void)
i
code : ++count;
)
void showr-ndo /rrni d'l
i
cout << Itobject number:t << code << tt\ntti
]
static void showcount (void) / / staEic member function
{ cout << Itcount: rr<< count<< rr\nil.
)

ini- 1-ocl-.. ^Arrhl-
.

. vvqrret

int main ()

{
fA<t l-1 ft.v.,

f '1 cal- nnrla/\.evvsv \, t

t2. setcode O ;
test:: showcountO;
test t3;
i? cainada/\.vv . vv evvsv \ / ,

test::showcountO;
tl. showcode O ;
t2. showcode O ;
t3.showcodeO;
return 0;

/ / accessing static function

Output
count: 2

count: 3

object number:1

object number:2

object number:3

Note: Note that statement

code - ++count;
is executed whenever setcode0 function is invoked and the cwrent value of count is assigned to

code. Since each object has its own copy of code, the value contained in code represents a unique
number of its object.

Remember, the following function definition will not work:
static voj-d showcount ()
{ cout<< code; / / code is not static }

O"
ut$0i OOPwith C++ C/asses and Objects

| 4. Pointer to Members
A pointer that points to a member of a class and not to a specific

instance of that member in an object, such a pointer is called a pointer to a
class member or a pointer-to-member. It is not same as a normal C++
pointer. It only provides an offset into an object of the member's class at
which that member can be found. Since member pointers are not true
pointers, the operators like . and -r cannot be applied to them. Special
pointer -to- member operators .* and -)* must be used to access a member of a class given a pointer
to that member.

The address of a member can be obtained by applying the operator '&' to a "fully qualified" class
member name. And the class member pointer can be declared using the operator ::* with the class
name.

The dereferencing operator+* is used to access a member when we use pointers to both the
object and the member. The dereferencing operator . 'r. is used when the object itself is used with the

member pointer.

By using the deferencing operators (.*,+*) in the main we can also invoke a pointer to member
functions as shown below
(Object-name.* pointer-to-member function) (20) ;
(pointer-to-object-+* pointer-to-member function) (20) ;

Consider the following example:
class A
{

private:
int x;
public:

,
totd display () ;

A pointer to the member x can be defined as:
int A::*pm = &A:;x;

The pm pointer created acts like a class member in that it must be invoked with a class object. It
can also be used to access the member x inside member functions.
A a; //a is an object of A
cout<<a. *pm ; //display
cout<<a.x; //same as above

Following program illustrates the use of .* operator

include<i os tream>
using namespace std;
cl-ass A
{

nrr'l'r] i a.
Ysv-4v.
i ^r .,- L.^.IllL VaaUgt
rrnid aoi-drl-:/int i\vvf q YeLvquq \rrrL r/

OOP with C++ C/asses and Objects
O"

utd0tl

)t

ivalue =i;1
int doubl-e_value o
{ return val-ue + value

int main ()
{ in1- a..*/.]il- ..ss ug t

Aa;
data :eA::va1ue1

/ / data member pointer
/ / a is the object of class A
/ /geL address of value

rra.i cl/A..*nl- l /inf \ - ?\..aafrl=+r/\ //aainlar j-n frrnnf inn nai^rl-a/lvvru\4,. Pul \arrLl - d..vcuqaLq\,/ / /}JvrrrLs! Lv ruttvufvrr ysuuquq\/
/ /invoLves qetdata

cout<<ttThe value is rt<<a.*data<<tt\nrt
cout<<rrTotal = "<<doubf e_value () (<tt \n" ;
A *po :. &ai
po-)*pf (f '7) ;
cout<< rrTotal-:'r <<double_vaIue () << " \n " ;
return 0;

In the above program, in main0, the two member pointers are created, i.e., data and pt. Look at
the syntax of each declarations. While declaring pointers to members, you must specify the class and
use the scope resolution operator. The proglam also creates object of A called a. According to the
above program, member pointers may point to either functions or data. Next, the program obtains the
addresses of value and getdata0. These addresses are really just offsets into an object of type A, at
which point value and double-value0 will be found. Next, to display the values of each object's
value, each is accessed through data. Finally the program uses pt to call the getdata function. In order
to correctly associate the .* operator the extra parenthesis are necessary.

Next the program declarespo, the pointer-to -object a and stores the address of a. po accesses the
pt which stores the value 17 in the member value of class A.

We have already seen that -)* operator is used when you are using a pointer to the object and the
member.

Continuing from the previous example;

Axpa;
pa : &a; / /pa ts pointer to object a
cout<<pa-f*pm; / /disp1ay x
cout<<pa-)x; / / same as above

Following program illustrates this.

Erllg

#include<iostream>
uslng namespace std;
class A
{

^,,L1 I ^ . i ^r ..- lpuDrr-c : J-ntr va-Lue i
rroi d ooid:1- a 1i ni i I

{
value = i;

)
int doubLe_value ()

O"
util0tl OOP with C++ C/asses and Obiects

{
return value + valuel

i
l.
l -r -^l - / \rrrL rtLqlrr \,,
{

int- A..*r{al-..usest

void (A::*pt) (int);
data : &A::value;
Pt(int): &A::getdata;
A a; A* P1; P1 : &a;
a.*pt (12) ;
int (A: : *func) O i

/ / data member
/ / function

nni nl- ar

momhar nni nforyv*.r ee!

func .= &A: :doubl-e_value;
cout<<rtThe values are: tt;
cout<<P1-+*data<< " \n "
cout <<rrThe value is doubled";
cout << (Pl-r*func) O;

return 0;
]

The Pl is pointer to object of type A, Therefore, the ->t operator is used to access
double_value0.

| 5. Local Classes
Classes which are defined and used inside a function or block are called as local classes.
When a class is declared within a function, it is known only to that function and unknown outside

of it.
For example

g

value and

rroid resrrlt(inf r)\+r.u - /

{.

class student
{

student S1 (r)

/ / function

/ / local class

/ / class deflnitlon

/ / creates student object
/ / use student object.

)

There are several restrictions in constructing local classes. First, all member functions must be
defined within the class declarations. A local class can access the static local variables which are
declared within the function or those variables which are declared as extern. The local class does not
access the local variables of the function in which it is declared. It may access the typenames and
enumerators, defined by the enclosing function. No static variables may be declared inside a local
class. Because of these restrictions local classes are not common in C++ programming.

OOP with C++ C/asses and Objects
O"

eEni

| 6. Friend Functions
We know that there are three levels of internal protection for different

members of a class: public, protected and private.In the case of protected
and private members, these could not be accessed from outside the same
class at which they are declared. That is, a non-member function cannot
have an access to the private data of a class however, there could be a
situation where we would like two classes to share a particular function.
For example: Consider a case where two classes student and teacher have
been defined. We would like to use a function school} to operate on the
objects of both these classes. In such situations, C++ allows the common
function to be made friendly with both the classes, thereby allowing the function to have access to
the private data of both these classes. Such a function need not be a member of any of these classes.

To make an outside function "friendly" to a class, we have to simply declare this function as a
friend of the class.

Syntax

For example
class xyz

. '..:
Vqvr4v.

frionrl rrnid ncr/rznidI: // daal4patiOnvvas tsY- \vvrvt , I r

I;
The function declaration should be preceded by keyword friend. The function is defined

elsewhere in the program like a normal C++ function. The function definition does not use either the
keyword friend or the scope operator ::. The functions that are declared with the keyword friend are
known as friend functions. Though a friend function is not a member function but it has full rights to
access the private members of the class.

In the following example we declare the friend function duplicate:

ml& Program uslng Frlend Functlon
/ / friend functions
inc lude< ios tream>
using namespace std;
class CRectangle {

int width, he1ght;
public:

void set_values (int, int) ;
int area(void) {return (width * height);}
friend CRectangle duplicate (CRectangle) ;

I;
void CRectangle::set_values(j-nt a, int b) {

width : a;

o"
$ile|| OOP with C++ C/asses and Objects

height = b;
I
l
CRectangle duplj-cate (CRectangle rectparam)

CRectangle rectres;
rectres.width = rectparam.width*2;
rea-f re-e, hci chl- = ro.ineram hoi nhl- *?.9yg!qr'..lL9LYL'w.,

return (rectres) ;
)
int main ()
I
I

CRectangle rect, rectb;
rect . set_val-ue s (2,3) ;
rectb = dupllcate(rect) ;
cout << rectb.area () ;

1

Output: Z
From within the duplicate function, that is a friend of CRectangle, we have been able to access

the members width and height of different objects of type CRectangle. Notice that neirher in the
declaration of duplicate(/ nor in its later use in main) have we considered duplicate as a member of
class C Re ctan gle. lt isn' t.

The friend functions can serve,pr exarnple: To conduct operations between two different classes.
Generally the use of friend functions is out of an object-oriented programming methodology, so
whenever possible it is better to use members of the same class to make the process.

Such as in the previous example, it would have been shorter to integrate duplicate0 within the
class CRectangle.

Member functions of one class can be friend functions of another class. In such cases. thev are
defined using the scope resolution operator which is shown as follows:
claqq n

It.

i ni frrnnl / I .
sr.v4 \ / t

l.
al rc< a
I

f-'io^A ini n

/ / member functlon of p

frrnal /\ . / t,,^^1 nf n i c frian| af a! urrur \ / , / ! qllgr vt P rp !! rErru w! g

The function func1Q is a member of class p and a friend of class q.

Friend Classes

Like friend function, we can also define a class as friend of another class, allowing that the
second one can access to the protected and private membets of the first one.

ffi OOP with C++ C/asses and Objects
Or

ur$0i

tT:]]4 Program uslng Frlend Class
i nc ludeciostream>
using namespace std;
cl-ass CSquare;
class CRectangle
{

int width, height;
public:

int area (void)
{return (width * height); }

void convert (CSquare a) ;
t.
al rcc f'Qarrrro IvvYeerv I

P!rvqLe.
int side;

public:
void set_side(int a)

{ si-de=a; }
friend class CRectangfe;

void CRectangle: : convert (CSquare
{

width : a.side;
height = a. si-de;

)
ini main{\ {

Csquare sqr;
CRectangle rect;
sqr.set_side(4);
rect.convert (sqr);
cout << rect. area () ;
return 0;

]

Output: 16

In this example we have declared CRectangle as a friend of CSquare so that CRectangle can
access the protected andprivale members of CSquare, more concretely CSquare::sid.e, that defines
the square side width.

You may also see something new in the first instruction of the program, that is the empty
prototype of class CSquare. This is necessary because within the declaration of CRectangle we refer
to CSquare (as a parameter in convert}).

The definition of CSqunre is included later, so if we did not include a previous definition for
CSquare this class would not be visible from within the definition of CRectangle.

Consider that friendships are not coresponded if we do not explicitly specify it. In our CSquare
example CRectangle is considered as a class friend,but CRectangle does not have the same thing
with CSquare, so CRectangle can access the protected and private members of CSquare but not the
reverse way. Although nothing prevents us from declaring CSquare as a friend of CRectangle.

q,

o"
utd0tl OOP with C++ C/asses and Objects

17. Unions and Classes
A union is a user defined data type whose size is sufficient to contain one of its members. At

most, one of the members can be stored in an union at any time. A union is also used for declaring
classes in C++. The members of a union ate public by default.

Syntax

unlon user_def ined_name
hr1\taf a.

/ /data
/ /methods

nrri.r] i n.

/ /methods
nrnJ- anl- ad .

/ /data

trqor dof i norl nrna nl.rian{-.vv lvve,

Declaration of an union without the user defined name or union tag is called as an anonymous

union. The names of the members of an anonymous union must be distinct from other names. A
global anonymous union must be declared static.

An anonymous union may not have protected or private members. An anonymous union may not
have a member function also.

For example

union student
{

hr 1 \ti f a .

r_nt rno;
nhrr nrma.rrs.rrv t

pubJ-ic:
rrnirl nol-infa/\.e-.r-v \ / t
rra'irl nrr1- infa/\.LLLV \ t f

tr

18. Object Composition and Delegation

| 8. I Object Composition
In computer science, object composition (not to be confused with function composition) is a way

to combine simple objects or data types into more complex ones. Compositions are a critical building
block of many basic data structures, including the tagged union, the linked list and the binary tree, as
well as the object used in object-oriented programming.

ffi C/asses and Objects
o"

ur$0i

A real-world example of composition may be seen in the relation of an automobile to its parts,
specifically - the automobile has or is composed from objects including steering wheel, seat, gearbox
and engine.

When in a language, objects are typed, types can often be divided into composite and
noncomposite types and composition can be regarded as a relationship between types: an object of a
composite type (e.g., car) "has an" object of a simpler type (e.g., whee[).

Composition must be distinguished from subtyping, which is the process of adding detail to a
general data type to create a more specific data type. For instance, cars may be a specific type of
vehicle: caris avehicle. Subtyping doesn't describe a relationship between different objects, but
instead, says that objects of a type are simultaneously objects of another type.

In programming languages, composite objects are usually expressed by means of references from
one object to another; depending on the language, such references may be known as fields,
members, properties or attributes and the resulting composition as a structure, storage record,
tuple, User-Defined Type (LIDT) orcomposite type. Fields are given an unique name so that each
one can be distinguished from the others. However, having such references doesn't necessarily mean
that an object is a composite. It is only called composite if the objects it refers to are really its parts,
i.e., have no independent existence.
Example
i' |

^^*^^^lrl^-VTT VVIIIPVDI LIUII

,/ / compos it ion
cl-ass car
{
private:

Mnfnr*mnfnr. rLLv ev! t
public:
carO {motor=new * MotorOi}
- carO { delete motori}
\;

18.2 Delegation
In object-oriented programming, there are three related notions of delegation.

o Most commonly, it refers to a programming language feature making use of the method
lookup rules for dispatching so-called self-calls as defined by Lieberman in his 1986 paper
"Using Prototypical Objects to Implement Shared Behavior in Object-Oriented Systems".
Delegation as a language feature supports theprototype-based programming model.

o ln its original usage, delegation refers to one object relying upon another to provide a
specified set of functionalities. In research, this is often referred to as consultation or as

aggregation in modeling
o lnCLI, adelegateis a form of type-safe function poin0erusually used in anobserver patternas

a means of telling which method to call when an event is triggered, keeping the method type.
Despite delegatiori being fairly widespread, relatively few major programming languages

implement delegation as an alternative model to static inheritance. The self programming language
incorpora0es the notion of delegation through its notion of mutable parent slots that are used upon
method lookup on self calls.

OOPwith C++

O"
0rilot OOP with C++ C/asses and ObjecE

In object-oriented programming, amulticast delegate is a delegate that points to several methods.
Multicast delegation is a mechanism that provides functionality to execute more than one method.
There is a list of delegates maintained internally, and when the multicast delegate is invoked, the list
of delegates is executed.

Delegation is the simple yet powerful concept of handling a task over to another part of the
program. In object-oriented programming, it is used to describe the situation where one object defers
a task to another object, known as the delegate. This mechanism is sometimes refened to
as aggregation, consultation or forwarding (when a wrapper object doesn't pass itself to the wrapped
object.

Delegation is dependent upon dynamic binding, as it requires that a given method call can invoke
different segments of code at runtime. It is used throughoutMac OS X(and its predecess
orNeXTStep) as a means of customizing the behavior of program components.It enables
implementations such as making use of a single OS-provided class to manage windows because the
class takes a delegate that is program-specific and can override default behavior as needed. For
instance, when the user clicks the close box, the window manager sends the delegate a
windowShouldClose: call and the delegate can delay the closing of the window if there is unsaved
data represented by the window's contents.

It has been argued that delegation may in some cases be prefened for inheritance to make
program code more readable and understandable.

18.3 Language Feature
The short definition is that delegation defines method dispatching the way it is defined for virtual

methods in inheritance: It is always the most specific method that is chosen during method-lookup.
Hence it is the oruginnlrec,eiver entity that is the start of method lookup even though it has passed on
conhol to some other object (through a delegation link, not an object reference). Delegation has the
advantage that it can take place at run-time and affect only a subset of entities of some type and can
even be removed at run-time. Inheritance on the other hand typically targets the type rather than the
instances and is restricted to compile time. On the other hand, inheritance can be statically type-
checked while delegation generally cannot without generics (G. Kniesel has shown that a restricted
version of delegation can be statically typesafe). Delegation can be termed "run-time inheritance for
specific objects".

Solved Programs

OOP with C++ C/asses and Objects
Or

urErotl

+;ir
,l',- ,bji

r. iri l
ctiArr:i
in' ie
f or,ti*$

l+'t !.

O"
eF|0i OOP with C++ C/asses and Objects

;iiiltliiili#

$u+fflffifii9p.,1'ry9
t"I*ffiirEl tflifilu ,ffi

iiiililliiiiii,ff iiiiriir,oiiiili

T+rii+iiirttiii* pu 1*r};'
l:t

ji ffiffiffiiii#iil

i+i1iriti1$rifit+ffi

'ii;iii#

$

OOP with C++ C/asses and Objects
0"

5d0i

iir

;iiiliii:#

Or
s$oil OOP with C++ C/asses and ObjecE

iiiiiiffi
i;11

lli.:.i'+iii$

fii ii

Ifi

itl

r.'j'

iit:

nii'ri.ijjr.i

OOPwith C++ C/asses and Objects
O"

ulilorl

+iii

,ni:i
i/.i

tirr#

O"
u$0tl OOP with C++ C/asses and ObiecE

rli

ExeRcrsEs
A. Review Questions

1.

)
3.

4.

).
6.

7.

8.

9.

10.

What is a class? How does it accomplish data hiding?

How does a class declaration differ from a class definition?

What are objects? How they are created?

Describe how the data members of a class can be initialized in C++.

How is the member function of a class accessed in C++?

What is an anay of object?

What is a friend function? What are the merits and demerits of using friend functions?

What are the two types of member functions?

When do you define a member function inside and outside the class definition?

What is meant by local classes?

B. Programming Exercise

1. Define a class to represent a back account. Include the following members:
Data members.' Name of the depositor, Account number, type of account, balance amount in
the account.

Memberfunctions: to assign initial values, to deposit an amount, to withdraw an amount after
checking the balance, to display name and balance. Write a program to test your class.

LlIti?i

ffi

;ifii#
iti#ffifti**fffi

Orgttoi OOP with C++ C/asses and ObjecE

'Fiulii*i'ii;t+iu

+iii'i;iiiri'"l

iFffit+ '+i1fl+ufr+Hili

OOP with C++ C/asses and Objects
o"

uFr0rl

utEl0rl

Conslruclor And Deslruclor

" | . lntroduction
Generally, objects are needed to initialize variables or assign dynamic memory during their

process of creation to become totally operative and to avoid returning unexpected values during their
execution. Consider the following program,

Program
incl-ude< io s tream>
using namespace std;
class CRectangle
I inl- v \r.
L 4..v z:, I t

public:
voj-d set_val-ues (int, int);
int area(void) {return (x*y);

l.

void CRectangle::set_val-ues(int a, int b)
{x:a;

Y: b;)
i nt- mr i n / \

{ CRectangle rect, rect.b;
rect. set_values (3, 4) ;
rectb. set_val-ues (5, 5) ;
cout << "rect area: " << rect.areafl << endl;
cout << "rectb area:rt << rectb.area() << endl;

)

6ol
Or

utSt0tl

OOP with C++
O.

ut3t0lConstructor and Destructol

What would happen if in the previous example we called the function area0 before having called
function set-valucs? Probably an indetermined result since the members r and y would have never
been assigned a value.

In order to avoid that, a class can include a special function: a constructor, which can be declared
by naming a member function with the same name as the class. This constructor/znction will be
called automatically when a new instance of the class is created (when declaring a new object or
allocating an object of that class) and only then. Constructors are also called when an object is
created as part of another object.

Similarly, when your object goes out of scope, the memory used by the object must be reclaimed.
C++ provides a special member function, called the destructor, which is called whenever your object
is destroyed so that you may perform any clean-up processing, such as freeing memory or other
system resources obtained by the object.

C++ also provides two other special functions that play a special role. Whenever an object must
be copied, its copy constructor is invoked.

Finally, whenever an object is assigned a value, its assignment operator is invoked.

2. Constructor
A constructor is a special member function for automatic initialization of an object. They have the

same name as the class name. There can be any number of overloaded constructors inside a class,
provided they have a different set of parameters. There are some important qualities for a constructor
to be noted.

2.1 Rules for Writing a Constructor Function
i. Constructors have the same name as the class.

ii. Constructors do not return any values (not even void).

iii. Constructors are invoked first when the objects are created. Any initializations for the class
members, memory allocations are done at the constructor.

iv. Constructors should be declared in the public section and in rare circumstances it should be
declared in private section.

v. Constructors cannot be virtual or static.

vi. An object with a constructor (or destructor) cannot be used as a member of a union.
vii. They make implicit calls to the operators new and delete where memory allocation is required.

viii. Constructors can have default arguments.

The general syntax of the consffuctor function in C++ is as follows:

o"
ul$0rl OOPwith C++ Co n structo r and D estru cto r

/ / consEructor declared

/ / consLructor defined

For example
class CRectangle
I int- r^ri.{l-h lrainh+.
|4rr9'r+gv1.,.rv:Yrr9,

n"1-'1 i ^.yuvrru.
f-Ractannla/\.

1nt area lvoid) ;

CRectangle : : CRectangLe ()

]

2.2 Types of Constructors
Constructors come in many forms. They are parameterized constructor, default constructor,

non-default constructor, copy constructor and dynamic constructor.

i. Parameterized Constructor
In the above example, the constructor CRectangle initializes the
data members of all the objects to 2,erc. However, in practice it
may be necessary to initialize the various data elements of different
objects with different values where they are created. C++ permits
us to achieve this objective by passing arguments to the constructor
function when the objects are created.
The constructors that can take arguments are called as parameterized constructors.
For example
class CRectangle
{ 1nt wldth, height i

public:
CRect.angle(int w, int h); //Parameteri-zed constructor
int area (void) ;

CRectangl-e : : CRectangle (j-nt w, int h)

{ width : w;
L^l -Lr - L.rr9r9rrL - rrt

j

,//constructor decl-ared

//constructor defined

ffi OOPwith C++ Constructor and Destructor
Q,

util0i

il. Default Constructor
A default constructor is a constructor that accepts no parameters. This may be achieved by
either providing default arguments for the constructor, or overloading the constructor with
another constrtrctor that has no arguments. The following example creales a default
constructor by providing default values for the arguments.

It is used for initializing the objects of a class. In other words, a default constructor function
initializes the data members with no arguments.

Syntax
className O; / / for default constructor

Example: The default constructor for a class x has the form x :: x0.

A constructor which has all default arguments, is also a default constructor, since it can be
called with no arguments.

Example: x :: x(const int x=0)

Default constructors allow objects to be created without passing any parameters to the
consfructor. For example: The declaration

Qf ri na c.9 vL lILY 9 ,

results in a string s that does not yet have a value; it is an empty string.

The default constructor usually creates an object that represents a "null" instance of the
particulm type the class denotes. The default constructor for a complex number might result in
an object with value zero, while the default constructor for a linked list might would result in
an empty list.

Often you will allow users of your classes to pass arguments to the constructor. Rather than
provide a separate default constructor that takes no arguments, it is better to provide a
constructor with default arguments that can serve as a default constructor or as a constructor
that takes the arguments it specifies. This makes your code more compact and leads to more
code reuse.

For example: The two constructors of a String, String0 and String(const char* str), can be

combined into a single constructor that has a default argument: Sfing(const chm* strO).
There can only be one default constructor, so don't add default arguments to all the arguments
of every constructor - your compiler is likely to complain

Default arguments are not restricted to constructors, they can be used by any member
function. Provide appropriate default values wherever appropriate.

incl-ude<iostream>
inc lude<i omanip>
class Date
{ / / ALEributes of the cfass

private:
int day;
int month;
i nf rraar:
// Methods of the cLass
hlrla l i

^
.

i / oetautt constructor

O"
uilotl OOPwith C++ Constructor and Destructor

Date(int d:17 int m:1, int y:26661 { set(d, m, y); }

void set(int d=1, int. m=1, int y:2000);
void validate O ;
void display ()
{ cout << setw(2) << setfill('0') << day << tt/11

<< setw(2) << setfil]('0') << month << u/u
<< setw(4) << seLfil-l('0') << year << endl;

]
L

The fallowing declarations are all validfor the Date class.
Date d1(20, t, 1964) i / / 20/0L/1,964
Date d2 (20, 1) ;
Date d3 (24\;
Date d4;

// 20/0t/2000
/ / 20/0!/2000
/ / ot/07/2000

In case of non-default argument it has parameters. These parameters are used to initialize
the object to a particular state.

You can overload the non-default constructors (like any function), if the number, order and
type of the parameters are different. This turns out to be very handy for objects with complex
state.

A non-default constructor can use default parameters and can thus emulate a default
constructor.

Syntax
className(parameter l"ist); // for non default constructor

iii. Copy Constructor
Before looking at the copy constructor, it's important to understand
the difference between initialisation and assignment. Initialisation
occurs when an object is ueated, and assignment occurs when an
assignment operator is used in an expression to set a previously
defined object to a value.
Date d1(20, 1, 1964);
Date d2 = dl; // IniLial-isation
Date d3;
qJ

-
vat // Assignment

h the above example, each member of the instance dl is copied to the instance d2, a process
called memberwise initialisation. A copy constructor is a special type of constructor that is
used to initialise the class object, to the value of another class object of the same class. The
copy constructor is like any other constructor, but has a reference to the object to be copied as
its parameter.

Syntax
cLassName (const cl-assName ¶meterName)

The following example defines a copy constructor for the date class.
include< ios tream>
inc lude< iomanip>

ffiffi Constructor and Destructor
O"

ut$0tl

class Date
{

/ / ettriAutes of the class
private:

i nf rlarr mr. ...JnEn, year;
// Methods of the class

nrrlal i a.

/ / Default consErucror
Date(int d=17 int m=L, int y:2000) {set(d, m, y);}

/ / copy constructor
Date (const Date ©)
{

daY : coPy'dayi
nan+ l.r - --r.Y. montn;
year = copy.year;

]
void set(int d=1,.int m=1, int y:2000);
void validate O ;
vold display ()

{
cout << setw(2) << seLfiLl('0') << day << n/n

<< setw(2) << setfill('0') << month << "/u
<< setw(4) << setfiff('0') << year << endl-;

)

The copy constructor may be called implicitly when an object is initialised to another object,
or explicitly by passing the object to be copied as a parameter. The following example
illustrates the two methods.
Date dl" (2 0, t , 1-96 4) ;
Date d2 : d1; / / Imp]icit Copy
Date d3(d11; // Explicit Copy

In this particular example, member wise initialization would have been sufficient. Our copy
constructor merely performs a member wise initialization so it isn't really required. When data
members are more complex data objects, relying on the member wise initialization process

may result in errors.

Note: Always provide a copy consffuctor for your classes. Do not let the compiler generate it
for you. If your class has pointer data members, you must provide the copy constructor.

Dynamic Constructor
While creating objects we can use constructors to allocate memory. This will enable the
system to allocate the right amount of memory for each object when the objects are not of the
sarne size, this results in saving of memory. Allocation of memory to objects at the time of
their construction is known as dynamic construction of object. "new" operator is used to
allocate the memory. When you use new to get memory for a class object, the compiler
executes the new operator function frst to allocate the memory and then calls the class's
constructor function. Likewise the "delete" operator is used to deallocate the memory. When
you use delete to return the memory, the compiler calls the class's destructor function.

OOP with C++

iv.

o"
uriloi OOP with C++ Co n structor and D estru cto r

Usually, the compiler provides the new and delete operator functions. They are the same
functions that allocate and return memory for intrinsic type objects.

The following program demonstrates the relationship involving new and the constructor
functions and delete and the destructor function.
#includeciostream>
..^l

--usr_ng namespace scd;
/ / The Date class
class Date
{ int mo, da, yri
public;

Date ()
i cout.<< rrDate construcLor"<< endl;)
-Date ()
{ cout<< frDate destructortt << endl; }

tt
int main ()

i Date * dt = new datei
cout<< "Process the date" <<end1;
delete dt;
return 0; i

The output of the above program is

Date constructor

Process the date

Date destructor

In the above program, Date class contains a constructor and a desffuctor. These functions
display messages when they run. When the new operator initializes the dt pointer, the
consffuctor function execules. When the delete operator deletes the memory pointed to by the
pointer, the operation calls the destructor function.

2.3 Guidelines for lmplementing Constructors
Constructors are called frequently, not only by you when you declare objects, but also when the

compiler creates temporaries, It is, therefore, important for the constructors to be compact and as
efficient as possible. Below are a few guidelines to consider when implementing constructors.

i. When initializing data members from the constructor, use initialization rather than assignment.
This will make your code more efficient and avoid extra calls to the constructors.

Suppose you have a Shape class with data members: center of type Point and color of type int.
When implementing the constructor, you might be tempted to use assignment, to initialize the
data members:

Shape::Shape(const Point center, const int col-or)
i center : center;

color = color;
]

Constructor and Destructor
o,

utfl0iOOP with C++

However, this results in an extra call to the constructor for Point and makes the code execute
slower. To see why, let's look at how objects are constructed. There are two phases to object
construction:

a. Data members are initialized in the order of their declaration in the class. This is called
member initialization.

b. The body ofthe constructor is executed.

Also, for derived classes, these two steps are performed on the base classes first.

In the Shape constructor, cenrer is constructed during Step 1, when the default constructor
for Point is invoked. Then in Step 2, when the body of the constructor executes the assignment
opefatof is invoked which changes the value of center.

Note that cenrer will always be initialized before the body of the constructor is ever
entered. However, you can conffol which constructor is called for center in the
initialization list of the Shape constructor:

Shape: :Shape(const Pointer center,const int color) : center(center)
color (col-or)
{}
Specifying cenrer (cenrerl in the initialization list, tells the compiler to call the copy
constructor rather than the default constructor during member initialization. Since center is
properly initialized, the assignment is no longer needed in the body of the constructor.

When implementing your consffuctors, fry to initialize all your data members using this
technique. In most cases, all can be initialized this way, so there will be no need for any code
in the body of the constructor. This makes your code much more readable and maintainable.

Actually, built-in types, such as int, do not have constructors. Therefore, it makes no

difference whether you use assignment or initialization for variables with built-in types. But,
the code is more manageable and easier to read if all data members are initialized the same

way.

ii. Pay attention to the order of member initialization. If you use a data member, dl to inirialize
another data member d2,make sure dl is in fact initialized before initializingd2.

Consider a StringHandle class, which declares data members in the following order:

ql- ri hd eJ-r.e e! 4r.Y _e !4 f

int _handlei
C++ language rules tell us ihat the members of a class are initialized in the order they appqr
in the class declaration, not in the order they appear in the initialization list of the constructor
(e.g.,

-str will be initialized before -handle).
The following constructor will compile, but will result in run-time errot:
StringHandle: : StringHandl-e (const int h)
:

-handl-e
(h) ,-str (QueryHandle (-handle))

Because _str appea$ first in the class declaration, it will be intilialized before -handle.
Unfortunately, -str uses -handle in its consffuction, which has not yet been constructed.

Specifying -handle
before -str in the initializer list doesn't matter.

o,
$iloi OOP with C++ Constructor and Destructor

1ll.

lv.

To fix this problem, we can use the incoming argument instead of the class member:
StringHandle: : StringHandle (const int h)
: _handle (h) ,_str (QueryStringHandle (h))

The reason that the initializer list order is ignored is so that the compiler can ensure that
variables are destroyed in the reverse order of their construction. There is no guarantee that the
constructor and destructor are implemented in the same source file. However, both the
constructor and destructor see the same class declaration, so there is no ambiguity involved by
using the declaration to drive the order of initialization.

Reference data members and const objects must be initialized using the initializer syntax.
References must point to another already existing object and, therefore, must be initialized to
point at the aliased object during initialization. A reference can only have one assignment for
its lifetime. Similarly, constant objects can never be assigned a value, so they must also be
initialized using an initializer. Here is a possible implementation of the constructor:
Make the constructor as compact as possible to reduce overhead and to minimize erors during
construction.
The constructor is called each time an object is created. Lots of times this occurs without your
control, such as when the compiler creates temporaries. Initialization of an object should not
take a very long time. Only do what is minimally necessary during construction. Reducing the
amount of processing you perform during construction also reduces the chance of an error
occurring.
Remember to invoke base class constructors from derived class constructors.
Constructors (as well as destructors and assignment operators) are not inherited by derived
classes. During member initialization, just before the constructor body is executed,
constructors are called for the data members and base classes of the class. As we know, the
compiler uses the initializer list to determine which constructor to call. If you do not call the
base class consfructor from the initializer list of a derived class, the compiler will generate a
call to the default constructor of the base class. If the base class does not have a default
constructor, the compiler will complain.
It is a good idea to initialize base classes and your data members from the initializer list of derived
classes. I tend to put my calls to base class constructors before initializing the data members.
Suppose we decided to derive a class Triangle from Shape:
class Triangle : public Shape
{

public:
Triangle (const Point center, const int coIor,

const Point v1, const Point v2, const Point v3)i
private:

_vrt _v-t _vJ,

I;
We call the Shape constructor from the initialization list of Triangle's constructor:
Triangle: :TriangJ-e(const Point center,const int color,

const Point v1, const Point v2. const Point v3)
: Shape (center, color) , _v1 (v1-) , _v2 (v2) , _v3 (v3)

OOP with C++ Co n structo r and D estructo r
Or

utEt0tl

2,4 Overloading Constructors
Like any other function, a constructor can also be overloaded with several'functions that have the

same name but different types or numbers of parameters. Remember that the compiler will execute
the one that matches at the moment at which a function with that name is called. In this case, at the
moment at which a class objects is declared. In fact, in the cases where we declare a class and we do
not specify any constructor the compiler automatically assumes two overloaded constructors
(" default c onstructo r" and " c opy c onstructor"). F or example
class CExample
{

nrrl-r'l i n.

lnE a,]), c;
void multiply(int n, int m) { a=n; b:mi c:a*b; };

j;
with no constructors, the compiler automatically assumes that it has the following constructor

member functions:

a. Empty constructor: It is a constructor with no par:rmeters defined as nop (empty block of
instructions). It does nothing.
CExamp1e: :CExample O t) ;

b. Copy constructor: It is a constructor with only one parameter of its own type that assigns to
every non-static class member variable of the object a copy of the passed object.
CExample::CExample(const CExamp1e& rv) { a=rv.ai b:rv.bi c=rv.ci }

It is important to rcalize that both default consffuctors- the empty constructor and the copy
constructor exist only if no other constructor is explicitly declared. In case that any constructor with
any number of parameters is declared, none of these two default constructors will exist. So if you
want them to be there, you must define your own ones. Of course, you can also overload the class
constructor providing different constructors for when you pass parameters between parenthesis and
when you do not (empty):

rni;rE

/ / avar 'l n:dinn rlqgg COpS|1.UC|O1.S
lncl-ude< ios tream>
using namespace std;
cfass CRectangle {

i hi r.'i Afl-\ L^i
^1-'t-.rrlL wlqLlt, rrgI9IrL,

nrrhl i a.

/-Danirnnla/\.v]\vv9q..Y.v \ / ,
f-Qa.l-anala/in+ lnf \ .vr\s9LqrrYrs \ 4rtLt LLLU l,
i hf

^raa
/rrai rl \ I ral-rrrn /r.'i rl1-h*1-'6i d1-'i \ . Iv$\Yv+Y/(.v99..r\v|fggrr

CRectangle : : CRectangl-e ()
{ width : 5;

hei chi = E:]

CRectangle: : CRectangle (j-nt a, int b)
{ width = a;

L^i-L+ - L.lrrglYrrU - P, I
int maln O {

aPA^frnala rarl I ? 1\ .vr\EvLslrYas !svu \4, al ,

O"
ut$0rl OOP with C++ C o n structor and Destru cto r

CRectangle rectbi
cout << rrrect area: rr

cout << trrectb area: n
<< rect.areaO << endli
<< rectb.areaO << endl;

0utput: rect area: t2
rcctb ar:ea:.zs

In this case rectb was declared without parameters, so it has been initialized with the constructor

that has no parameters, which declares both width and height with a value of 5.

Notice that if we declare a new object and we do not want to pass parameters to it we do not

include parenthesis 0:
CRectangle rectbi // righL
CRectangle rectbO; // wrong!

3. Multiple Constructors in a Class
C++ allows us to define more than one consffuctor in the same class.

For exatnple
Consider the definition of following class.

class Sample
{ int p, q;

public:
Sampl-eO { P:0; q=0; //

Sample(int m, int n) //
{ p= m; q:n; }
Sample (sample ci) / /
/h-i ^.^-; a. I
LP-r.PtY,-L.Yt t

);
The above sample class con[ains the three constructors. The first constructor receives no

arguments. The second receives two integer arguments and the third receives one integer object as an

argument. For example: The declaration,
Samp1e S1;

will invoke the first constructor and set both p and q of 51 to zero. The statement,
Sample 32(40,601;

would call the second constructor and initialize the data members p and q of 52 to 40 and 60

respectively. Finally, the statement
Sample S3 (S2) ;

would call the third constructor and copies the values of 52 into 53. In other words, sets the value

of every data element of 53 to the value of the corresponding data element of 52. As already seen,

such a constructor is called the copy constructor. As explained in previous chapters, the process of
sharing the same name by two or more functions is referred to as function overloading. Similarly,
when more than one constructor function is defined in a class we say that the constructor is
overloaded as alreadv seen.

constructor_no argument
constructor_two arguments

Constructor-one argument

ffi OOP with C++ Constructor and Destructol
o"

utiloi

4. Constructor with Default Arguments
In C++, we can define constructors with default arguments.

For example

The constructor CRectangle() can be declared as follows:
CRectangle(int width, int height=3) ;

The default value of the argument height =3. Then, the siatement CRectangleC(5); assigns the
value 5 to the width variable and 3 to the height variable (by default). However, the statement,
CRectangl e (4 , '7) ;

assigns 4 to width and 7 to height. The actual parameter when specified, overrides the default
value. The difference between the default constructor (add :: add0) and the default argument
constructor (add:: add(int=O)) - is that the default argument constructor int =0 can be called with
either one argument or no arguments, When called with no arguments, it becomes a default
constructor. When both forms, i.e., default argument consffuctor and default constructor are used in a
class, it causes ambiguity,/or emmple: The declaration

add obj;
is ambiguous, i.e., which one constructor to invoke, i.e., add :: add0 or add:: add(int=0, int =0)

5. Dynamic Initialization of Obiects
ln C++, the class objects can be initialized at run time (dynamically), We have the flexibility of

providing initial values at execution time. The advantage of dynamic initialization is that we can
provide various initialization formats, using overloaded constructors. This provides the flexibility of
using different formats of data at run time depending upon the situation. The following program
illustrates this concept.

Dynamlc Initlallzatlon of oblects
include<ios tream>
using namespace std;
class employee
J i nt amnl
L4rr9v.|lFr-1rv,

f I nat- <r I rrrr.vs*s! J t
n"1-.1 i ^ 'vuvrrv.

employee() // detaul-t conscrucror
{}

employee(int empno, float a)
/ / constructor with arsuments

t empl_no = emPnoi
salarY = a; i

employee (employee eemp) / /copy constructor
{ cout (("\n Copy constructor working \ntt;

empl_no: emp.empl_no;
sa]arY: emP.salarY;)

void dlsplay(void)
{ cout << tt\n Emp No.: " << empJ-_no<<ttsalary:tt<<salary<<end1; } I;vold main ()

O"
ud0rl OOP with C++ Co n structor and D estru cto r

{ int eno;
float sal;
clrscr () ;
cout <<t'Enter the employee number and salary \ntt;
cin >>eno>>sal;
employee objl (eno, sal); // dynamic initiali-zation of object
cout < rrEnLer the employee number & salary \n";
cin >> eno >> sal;
employee obj2(eno,sal); // dynamic initialization of object
objl.displayO; // function ca]]ed
obj2.display O ;
employee obj3 = obj2 i / / copy constructor called
obj3.display () ;
getch () ;

I t-'-l
IL-JI

,-i

The ouput of the above program will be :

Enter the employee number and salary
2000 5000
Enter the emplovee number and salary

Salary : 5000
Salary : 7000

2001 7000
Emp.No. : 2000
Emp.No. : 2001

Copy constructor working
Emp.No. : 2001SaIary : 7000

The following code segment shows a constructor with default arguments;

r-1tlJl

-# incl-udeciostream>
using namespace std;
class add
{ private:

int num1, num2, num3;
public:

add (int=O, int=O) ; / / oetault argument constructor
/ / to reduce the number of constructors

void enter(int, int);
void sum() ;
void displayO;];

/ / DefauIL constructor deflnltion
add:: add(int n1, int n2)
{ numl=nl;

num2:n2;
num3:0i)

void add: : sum ()

i num3=num1+num2;)
void add: :display ()

{ cout << "\n The sum of
)

Ewo numbers is:tt<< num3 << endl;

Now using the above code, objects of type add can be created with no initial values, one initial
value or two initial values.

For example
add obj1, obj2(j), obj3(1.5,.20);

Here, objl will have values of data members
numl:O, num2 =O and .num3=0

obj2 will have values of data members numl=7,num2=0 and num3=0
obj3 will have values of data members numl=15,nunt2=zo and num3=0
If two constructors for the above class add are

add::addo { } // Default constructor
and add: :add(int:O, 1nt=0) ; / /Default argument constructor

Then the default argument constructor can be invoked with either two or one or no parameter(s).

6, Const Object
A const object is defined the same for a user defined data type as a built-in type,

For example
const blob b(2); // oblect b is consranr

Here, b is a const object of type blob. Its constructor is called with an argument of two. Consider
another example:
const complex C(reaL, imag); //object C is constant

Here, C is a const object of type complex. If we modify the values of real and imaginary the
compiler will generate enor.

If you declare a member function const, you tell the compiler the function can be called for a
const object. A member function that is not specifically declared const is treated as one that will
modify data members in an object, and the compiler will not allow you to call it for a const object. In
short, a const object can call only const member functions and if it calls non-const member
functions, the compiler generates error. consider the following program,

inc lude< i ostream>
#include<date . h>
using namespace std.;
class Date
{

1nt month, day, yeari
public:
Date(int m, int d, int y)
t

month = m; day -4; year =yi
)

void dlsplay ()

0"
ut$0tl QOP with C++ C o nst ructo r and D estru cto r

{

cout<<month<< t /t<<day<< ' /'<<year 1

)

.l *r *^; - / \rrtL rllarrr \,1

{
con.qt dafe df (tz ?\ ?nn6I. // dt iq a conqf nl-riant nf irrna drt-a\!tlJt-vveJt t/ u vvJsvL vr uJPs qqLc

dt.displayO ; //compiler generate error
] Etlg

The call to the display member function generates a compiler error message because we are
calling a non-const function, i.e., display for a const object. Even though the function does not
change the data members of the object, the compiler has no way of knowing that, and generates the
eITOr.

7. Destructor
The destructor is an opposite of constructor.

Like constructor, the destructor is a member function whose name is the same as the class name
and it is automatically called when an object is released or destroyed from the memory, either
because its scope of existence has finished (For example: If it was defined as a local object within a
function and the function ends) or because it is an object dynamically assigned and it is released
using operator delete.

Rules for Writing a Destructor Function
The destructor must have the same name as the class with a tilde (-) as prefix.
It never takes any arguments nor retums any value.

. It cannot be declared as static, volatile or const.

. It takes no arguments and therefore cannot be overloaded.
It should have public access in the class declaration.

The use of destructors is specially suitable when an object assigns dynamic memory during its
life and at the moment of being destroyed we want to release the memory that it has used. Whenever
new is used to allocate memory in the constructors, we should use delete to free that memory.

Syntax

Program
nclude<iostream>
ing namespace std;
ass CRectangle

i nt *uti.lt-h *haial.rt.
'yfver., rrv4Ylrut

i.
ii.
iii
iv
V.

r-iltL.rlg
4l

c1
{

OOP with C++ Constructor and Destructor
Or

ud0i

^,.1-.'1 i a.yuvrrv.
CRectangle (int, int) i
-CRectangle O ; //Destructor
ini aror/rrnirll {rai-rrrn (*uridfh * *hcichi. l:}ss\vvts/ t4ves!r. \ LreLYLtv, t t

CRectangle: :CRectangle(int a, int b)
t

width = new int;
height = new 1nt;
*width = ai*height = bt]

CRectangle : : -CRectangle ()

{
!^1^!^ ,,i lrL.qgrEuE w!qulr,
delete height;)

i nl- m:'i n / I

{
CRectangle rect (3,4) , rectb (5,6) ;
cout << 'rrect area: tr << rect.area0 << endl;
cout << 'r rectb area : tr << rectb. area () << endl;
return 0i

:12
:30

Output: rcct atea

rectb area

Solved Programs

jiirj.iiii;ti+;;iiiliiiirilti"r

*-***Hfi$**ilfrfi-

O"
$il0t1 OOPwith C++ Constructor and Destructor

OOP with C++ Co n stru ctor and D estructo r
O"

utd0tl

,111;1ii11;iri;,ii1 ltt

ExeRcrsEs
A. Review Questions

What is constructor? What are the uses of declaring a constructor member function in aprogram?

Explain the different types of constructors.

What is panmeteized constructor?

What is copy constructor? What is its purpose?

What is a default constructor?

Explain the new and delete operators.

What is destructor?

What is dynamic constructor?

What is mean by const object?

Or
ut$otl OOP with C++ Co nstructo r and D estru cto r

B. Programming Elercises
1. Write a class called CAccount which coirtains two private data elements, an integer

accountNumber and a floating point accountBalance, and three member functions:
a. A constructor that allows the user to set initial values for accountNumber and

accountBalance and a default constructor that prompts for the input of the values for the
above data members.

b. A function called inputTransaction, which reads a character value for transactionType
('D' for deposit and ''W' for withdrawal) and a floating point value for
transactionAmount, which updates accountBalance.

c. A function called printBalance, which prints on the screen the accountNumber and
accountBalance.

2. A book shop maintains the inventory of books that are being sold at the shop. The list includes
details such as author, title, price, publisher and stock position. Whenever a customer wants a
book, the sales person inputs the title and author and the system searches the list and displays
whether it is available or not. If it is not, an appropriate message is displayed. If it is, then the
system displays the book details and requests for the number of copies required. If the
requested copies are available, the total cost of the requested copies is displayed; otherwise the
message "Required copies not in stock" is displayed.

Design a system using a class called books with suitable member functions and constructors.
Use new operator in constructors to allocate memory space required.

3. Write a program to print the factorial of a given number using a constructor and a destructor
member function.

4. Write a program to read n numbers (where n is defined by user) and find the average of the non-
negative integer numbers. Also find, the deviation of the numbers using new and delete operators.

------*$

$Hffi lll*'*"=*'-'*'**ffi

ffi OOP with C++ Constructor and Destructor
o"

utd0tl

Hil+iiir|iirr;'i
f#+$flfl*+-+#+ul

,:ri.,ti

*&
urSr0rl

Operolor Overloqding And
e Conversion

l. Introduction
Operator overloading allows us to assign additional meaning to most of

the standard C++ operators. When overloading operators, it is good
practice to ensure that the overloaded operator has a similar behaviour to
the original operator. For exarnple: It would make more sense to use the +
operator for concatenation of strings than the = operator. Overloading
operators does not change the precedence and associativity of the operator.
New operators cannot be introduced using operator overloading. You can overload operators by
creating operator functions. An operator function defines the operations that the overloaded operator
will perform relative to the class upon which it will work. An operator function is created using the

The keyword operator must be preceded by the return type of a function which gives information
to the compiler that overloading of operator is to be carried out.

Operator functions can be either members or nonmembers of a class. Nonmember operator
functions are always friend functions of the class. However, the way operator functions are written
differs between member and nonmember functions. The basic difference between them is that a
friend function will have only one argument for unary and binary operhtors, while a member

7o1
-----a;

utfl0i

keyword operator.

return-Lype class name : : operator operator_to_be_overloaded (parameters)

Operator Overloading and .

o"
utEt0tl

function has no arguments for unary operators and one for binary operators. This is because the
object used to invoke the member function is passed implicitly and therefore is available for the
member function. This is not the case with friend functions. Arguments may be passed either by
value or by reference.

Thus, to declare operator+ as a friend function of class X, the following would be written:
friend X operatort(X&, Y&); // assume X is a class

and thereafter, to evaluate the expression xl + x2 for two instances of class X, the C++ cor-npiler
will call the function operator+(xlrtQ\.
List of the operators that can be overloaded

OOP with C++

Comma Binary

LooicalNOT Unary
t- Inequality Binary
o/ Modulus Binary

o/o- Modulus/assionment Binary

& Bitwise AND Binarv

& Address-of Unary

&& LooicalAND Binary

$= Bitwise AND/assionment Binary

Function call

Multiplication Binary

Pointer dereference Unary

Multiplication/assionment Binary

+ Addition Binary

+ Unary Plus Unary

++ lncrement Unary

+= Addition/assionment Binary

Subtraction Binary

Unary negation Unary

Decrement Unary

Subtraction/assionment Binary

Member selection Binary

List of the operators that can not be overloaded

lffi6to+r{liil+i
Pointer-to-member selection Binary

Division Binary

Division/assiqnment Binary

Less than Binary

Left shift Binary

<<= Left shitVassignment Binary
<= Less than or equal to Binary

Assionment Binary

Equality Binary

Greater than Binary

>= Greater than or equal to Binary

Rioht shift Binary

>>= Risht shifvassignment Binary

Arrav subscript
Exclusive OR Binarv

Exclusive OR/assiqnment Binary

Bitwise inclusive OR Binarv
t-t- Bitwise inclusive OFi/assionment Binary

LooicalOH Binary

Ones complement Unary

delete delete

new new

o"
urilorl OOP with C++ Operator Overloading and . . .

Although overloaded operators are usually called implicitly by the compiler when they are
encountered in code, they can be invoked explicitly the same way as any member or nonmember
function is called:
D^i h+ nf .! vrr.u ue,
pt.operator+(3)i // CaIL addition operator to add 3 to pt.

The following points will help in designing classes with overloaded operators (assume that a and
b are instances of appropriate class types).

i. C++ does not "understand" the meaning of an overloaded operator. It is the programmer's
responsibility to provide meaningful overloaded functions.

ii. C++ is not able to derive complex operators from simple ones. For instance, if you define
overloaded operator functions operator* and operatol=, C++ cannot evaluate the expression
a *= b correctly.

iii. The programmer can never change the syntax or original meaning of an operator. Operators
that are binary must remain binary. Unary operators must remain unary.

iv. The programmer cannot qeate new operators for use in expressions. Only those operators that
are predefined or listed in C++ compiler can be overloaded. However, the programmer can
always write functions for special cases.

v. The overloaded operator must have atleast one user defined type operand.

vi. The programmer cannot use friend function to overload certain operators such as Function call
operator 0, Subscript operator [], Class member access operator -> and Assignment operator

vii. The programmer may overload the operators ++ and - -.

2, Overloading U nary Operators
Unary operator overloaded by member functions takes no formal arguments, whereas when they

are overloaded by friend functions they take a single argument.

2.1 Overloading of Unary Minus Operator
The unary minus or negation (-) operator changes the sign of an operand when applied to a basic

data item. We will see how to overload this operator so that it can be applied to an object much the
same way as us applied to an int or float variable. The unary minus when applied to an object should
change the sign of each of its data items.

ti-l
ILII.=5

include< ios tream>
using namespace std;
nlac< qrmnla

{ int a, b;
public:

ffi OOP with C++ Operator Overloading and . . .

O"
uril0tl

void getdata(j-nt a,
void display (void) ;
vold operator- O ;

int b) i

//overload unary minus
i
rrniA ermnl6..^6l-l-+r/i-f - .i^f h\vvrs oqrrrprs..y9uuaLallrrL dt IIrL u,

{ x=a;
Y=b;]

void sampie :: display(void)
{ cout << x <<rr " i

cout << y << tt\ntt;
)

vold sample : : operator- o
i x=-x;

v = -vt)
int main ()
{ sampfe S;

S . getdata (70, -20I- ;
cout << ws'tr'
Q rli<nlarrl\:v.vLvYLgJ v f

/ / acLLvates operator- O function
cout << ns. r.
S. display O ;
rcl- rrrn O r

Output
S: 10 -20
S:-10 20
The function operator-() takes no argument and it changes only the sign of data members of the

object S.

Since this function is a member function of the same class, it can directly access the members of
the object which activated it.

The statement like 52 = -S1; will not work because, the function operator-() does not return any
value. It can work if the function is modified to return an object.

It is possible to overload a unary minus operator using a friend function as follows:
friend void operator-(sample &s);,//decfaration
void operator-(sample cs) i / /definition
i s.x = -s.xj

s'Y : -s'Y;
s.z = -a.zi)

Note that the argument is passed by reference. It will not work if we pass argument by value
because only a copy of the object that activated the call is passed to operator-0. Therefore, the
changes made inside the operator function will not reflect is called object.

2.2 Overloading the lncrement and Decrement Operators
The increment and decrement operators fall into a special category because there are two variants

of each:
o Pre-incrementandpost-increment
o Pre-decrementandpost-decrement

o,
uilorl OOP with C++ Operator Overloading and .

When you write overloaded operator functions, it can be useful to implement separate versions

for the prefix and postfix v'ersions of these operators. To distinguish between the two, the following
rule is observed: The prefix form of the operator is declared exactly the same way as any other unary
operator; the postfix form accepts an additional argument of type int. Note: When specifying an

overloaded operator for the postfix form of the increment or decrement operator, the additional
argument must be of type int; specifying any other type generates an error. The following example

shows how to deftne prefix and postfix increment and decrement operators for thc Point cla.ss:

m
- Program for overloadlng Increment and decrement operators
class Point
{ public:

/ / DecLare prefix and postfix increment operators.
Point& operator++O; // Prefix increment operator.
Point operator++(int); // Postftx increment operator.
/ / Declare prefix and postfix decremenL operators.
Point& operator-- O ;
Dni nf ^narll-^r-- 1i nl-) :v}/e!quvr \frre, f

/ / DefLne default constructor.
PointO{x=Y:0;}
/ / DefLne accessor functions.
int xO { return x; }
int yO { return yi }

hr i \rt l- a .

int x, y; \.;
/ / oefine prefix increment operator.
Point& Polnt: : operator++ ()

{ x++;
y++ i
return *this; / /Refer 5 in this chapter

)
/ / Define postfix increment operator.
Dni nf Pni nf . .

^nar^1-nr++ / i nf)

{ Point temP : *this;
++*this;
return temp;)

/ / Define prefix decrement operator.
Point& Point: : operator-- ()

{ x--;
v--,
reLurn *this;)

/ / Deflne postfix decrement operator.
Dni nl. Dni nf . . har.l-ar-- / i nf I..vlrvrqev- \fr.e,

{ Point temP = *this;
__*t.his i
return temp;]

int main ()
t

)

/ / PrefLx decremenL operator.
// Postfix decrement operator.

OOP with C++

The same operators can be defined in file scope (globally) using the following function heads:
friend Point&
friend Point&
friend Point&
fri-end Point&

nnara I n rll
nnarri rfr

operator--
operator--

Point&)
Dni nt-r- i hf \r v+r.Es, I

Polnt&)
Dni nf r- .i h+ \r v+rre*t J

/ / Prefix increment
/ / Postfix increment
/ / Prefix decrement
/ / Postfix decrement

3. Overloading Binary Operators
To declare a binary operator function as a non-static member, you must declare it in the form:

rcr I a

where, ret'type is the return type, op is the operator to be overloaded andarg is an argument of
any type. To declare a binary operator function as a global function, you must declare it in the form:

^--1drua ar
where, ret'type and op are as described for member operator functions and argl and arg2 arc

arguments. At least one of the arguments must be of class type.
Note: There is no restriction on the return types of the binary operators; however, most user-defined

binary operators retum either a class type or a reference to a class type. The following
example overloads the + operator to add two complex numbers and returnsthe result.

lncl-ude< i o s tream>
using namespace std;
cl-ass complex
{ pubfic;

complex0 { i // consLructor 1
^^-^l^--ts1^af r flnl| i\evtrrPr9A\!Iuqu !, !rvqL !,
{x=r;y=i;}
complex operator+ (complex) ivoid display (void)
prJ_vate:
float x, yi l;

/ / OperaLor overl_oaded using a member function
complex complex: :operator+ (complex c)
{ complex temp; / / lomnnrart,

temp.x = x + c.x; // float additions
temp.y=y+c.yi
return (t.emp) ;)

void complex :: display(void)
{ cout << x << tt+jtt << Y ((tt\ntti

}1nt main ()

{ complex a: complex(1,.2, 3.4);
complex b : ccrmplex (5.6, 4.8) ; complex c;
a : a + h.

'
p,

cout << tra : n.
a.display () ;
cout << ub - tr.

c"
ur$0rl OOP with C++ Operator Overloading and . . .

b.display () ;
^^\11

// ll^
-

ll .vvqL \\ ,

c.displayO;
ral-rrrn O r

tr:le!5

Output
a= 1.2 + j3.4

b=5.6+j4.8
c=6.8+j8.2

Overloading Binary Operators using Friends
In many cases, whether you overload an operator by using a friend or a member function makes

no functional difference. In those cases, it is usually best to overload by using member functions.
However, there is one situation in which overloading by using a friend increases flexibility of an
overloaded operator. Let's examine this case now. As you know, when you overload a binary
operator by using a member function, the object on the left side of the operator generates the call to
the operator function. Further, a pointer to that object is passed in this (Refer 5) pointer. Now assume
some class that defines a member operator+0 function that adds an object of the class to an integer.
Given an object of that class called obstacle, the following expression is valid:
Ob + 100 //valid

In this case, Ob generates the call to the overloaded + function and the addition is performed. But
what happens if the expression is written like this?
100 + Ob //invalid

In this case, it is the integer that appears on the left. Since an integer is a built in type, no
operation between an integer and an object of Ob's type is defined. Therefore, the compiler will not
compile this expression. The solution to the preceding problem is to overload addition using a friend,
not a member function. When this is done, both arguments are explicitly passed to the operator
function. Therefore, to allow both object+integer and integer+object, simply overload the function
twice - one version for each situation. Thus, when you overload an operator by using two friend
functions, the object may appear on either the left or right side of the operator. This program
illustrates how friend functions are used to define an operation that involves an object and built in
type:

inc Lude < iostream>
using namespace std;
cfass loc
{ int longitude, Iatitude;

public:
loco { }
1oc(1nt 19, int lt)
{ longitude = Igi

latitude = l-t;]

ffi OOP with C++ O perato r Over load i ng and
O"

utSt0tl

void show ()

{
cout << longitude << " ,'i
cout <<]atitude << "\ntt;

I;
friand Inc nncrrl-^r +/'l na nn1 inf nn?\.' \ 4vv vyr, LLtw vy- L

fri cnd I nn nnora'i-^r + / i nt- nn1 I nn nn9\ ', \4rru vy4r Lvv vl/-t,
/ / + is overloaded for loc + int

loc operator +(1oc op1, 1nt op2)
I l nn l-amn.
L+vv9vI|LFl

tcmn I nnai 1- rrrlo- an1 'l anai f rl.la r ^hr.rvrrYruuue- vyr. rvrtvruqqc T vPZ,
i-amn Ia'!- ii-rrcla = ^n1

l:iifrrAa r nn2.I vtz- |
ra.Frrrn i-6mn. I

I

/ / + is overl-oaded for int + loc
I ac nnar:t Ar + 1 i nf nn1 I na nn2 \

' \ 4rr e v!,r r Lvv vy- r
I l nn fahn.(rvvvvr!|ts'

temp.Iongitude = op1 + op2.longitude;
temp.l-atltude = op1 + opz.latitude;
ral-llrn famn. I

)

int maln ()
{ loc obL (10,20) , ob2 (5,30) , ob3 ('7,1-4) ;

obl. show O ;
ob2. show() ;
ob3. show O ;
ob1 = ob2 + 10; //both of these are vaLid
ob3=70+ob2;
obl. show O ;
ob3. show O ;
return 0;

]

4.
i.

Limitations of Operator Overloading
The overloading of operators is only available for classes; you cannot redefine the operators
for the predefined simple types. This would probably be very silly since the code could be
very difficult to read if you changed some of them around.

The logical and "&&" and the logical or "ll" operators can be overloaded for the classes you
define, but they will not operate as short circuit operators. All members of the logical
construction will be evaluated with no regard concerning the outcome. Of course the normal
predefined logical operators will continue to operate as short circuit operators as expected, but
not the overloaded ones.

If the increment "++" or decrement "--" operators are ovedoaded, the system has no way of
telling whether the operators are used as preinqement or postincrement (or predecrement or
postdecrement) operators. Which method is used is implementation dependent, so you should
use them in such a wav that it doesn't matter which is used.

ll.

o,
util0i Operator Overloading and . . .

5. "thistt Pointer
When a member function is called, it is automatically passed as an implicit argument that is a

pointer to the invoking object (that is, the object on which the function is called). This pointer is
called this.

It is a cornmon knowledge that C++ keeps only one copy of each member function and the data

members can allocate memory for all of their instances. These kinds of various instances of data are

maintained using this pointer.

syntax
@

this pointer is initialized to point to the object for which the member function is invoked. this
pointer is most useful when working with pointers and especially with a linked list when you need to
reference a pointer to the object you are inserting into the list. The keyword this is available for this
purpose and can be used in any object. Actually the proper way to refer to any variable within a list
is through use of the predefined pointer this, by writing this->variable-name, but the compiler
assumes the pointer is used, and we can simplify every reference by omitting the pointer.

Look at the following example to understand how 'this'pointer is used.

#include<iostream>
using namespace std;
nl ac< nr.rrIvreev rr5 r

double b;
int e;
double vali
public:

pwr (double base, int exp) ;
double getJwr ()

{return val; } };
pwr : : pwr (double base, int exp)
{ b = base;

e = exp;
val : 1;
if (exP := 0)

return i
for(; exp > 0; exp--)

val=val*b; i
int main ()

{ pwr x(4.0, 2), y(2.5, 1), z(5.'7, 0);
cout << x. getJwr ()
cout << y.gretl>wr () << fr " i
cout << z . getJwr o
ral- rrrn O.
-vesrrr vt

)

Within a member function, the members of a class can be accessed directly, without any

class qualification. Thus, inside pwr0, the statement

OOP with C++

trn

object or

OOP with C++

b : base;
means that the copy of b associated with the invoking object will be assigned the value contained

in base. However, the same statement can also be written like this:
this ->b = base;

The this pointer points to the object that invoked pwr0. Thus this->b refers to that object's copy
of b. For example: If pwr0 had been invoked by x(as in x(4.0, 2)) then this in the preceding
statement would have been pointing to x. Writing the statement without using this is really just
shorthand.

Here is the entire pwr0 constructor written using the this pointer:
pwr : : pwr (double base, int exp)
{ this->b : base;

this->e : expi
this->val : 1;
if (exP=:g) return;
for(; exp>0iexp--)

thls->val : this->val * this->b;)

Actually, no C++ programmer would write pwr0 as just shown because nothing is gained, and
the standard form is easier. However, this pointer is very important when operators are overloaded
and whenever a member function must utilize a pointer to the object that invoked it.

this pointer is automatically passed to all member functions. Therefore, get_pwr0 could also be
rewritten as shown below:
doubl-e get_pwrO {return this->val; }

In this case, if get_pwr0 is invoked like this:
y. getgwr O ;

then this will point to object y.

Some points regarding "this"
this pointer stores the address of the class instance, to enable pointer access of the members to
the member functions of the class.
this pointer is not counted for calculating the size of the object.
this pointers are not accessible for static member functions.
this pointers are not modifiable.
As friend functions are not members of a class, therefore are not passed as this pointer.

6. Overloading ((and >> Operators
6. I Overload the Insertion Operator

One of the features of the VO stream classes provided in C++ is the capability to overload the
insertion so that it can be used with instances of user-defined classes. In other words, the goal is to
be able to output instances of user-defined types just as though they were instances of primitive
types. This can be done because the insertion operator, which has already been overloaded by the
ostream class, may be overloaded again by you so that you may then use the instance cout in the
Itonnal fashion. Certainly, if you failed to overload the operator, the compiler would have no idea
wlul lo do except generate a compilation eror.

O"
utSt0tl OOP with C++ Operator Overloading and . . .

The general format for the function declaration and definition are:
/ Ftanl arrl- i an

friend ostream& operator<<(ostream&, const X&);
/ /Definit ion
ostream& operator<<(ostream& sLream, const Xe obj)
| //output fields of the object using'obj;'and the dot operator. Then

return stream;)

Since you want this function to be invoked by the instance cout and not by an instance of the
user-defined class x, it must be declared as a binary friend of the class x. The first argument is a

reference to the first argument of the function call (usually cout), and is returned by reference so that
function calls can be chained together. The second argument must be an instance of the user-defined
class x, and should be passed in by constant reference. Here is a complete example that uses the
complex class to add two numbers together. Then the overloaded operator<<0 friend function is
used to display all three numbers.

irtl4
#include<iostream>
rre i nc h^m6cnt^6..*..,--r--- sEoi
nl:cc namnlaw
I rlnrrl.r'la raal i4vs+, -mg;public:

complex(double : 0.0, double : 0.0);
f ri onr{ nnmn'l ov 6naraf nr+ /ann-+ ^^*^1 ^.'c ^^nci nnmnl awf, \!!lslrq gvrLrPrsA v}JErqtu! r \uultDu uvlLLlJlEAq, uvlrDL uvtrrlJaE^u,,
friend ostream& operator<<(ostream&, const complex&) ;

inline complex::complex(double r, doubJ-e 1) { real : r; 1mg = i' 1

complex operator+(const complex& c1, const complexe c2)
{ compl-ex c;
c. rea.l- : cl- . real- + c2 .reaI;
c ima = cT ima + 12 ima.v.flLlY-vf.ftLl:,|9..L1||YI
16lllrh d. t

)

ostream& operator<<(ostream& stream, complex& c)
{ return stream<<c.real-<<(c.img (Q r I r ' tr+il) << c.img <<"j-";}
int maln ()

{ complex cl- (3, -4) , c2 (21 ;
complex c3 = c1 + c2;
cout << ilC1:tr << c1 ((u\n'i
cout << nC2:tt << c2 <<tt\ntt;
cout << trC3-il << c3 <<tt\ntt;
return 0;

] ir-lILJI

Output
Cl =34i
C2=Z+Oi

.C3
=54i

ffi Operator Overloading and . . .

Or
utiloi

6.2 Overloading Extraction Operator
We have already seen how an insertion operator is overloaded for a user defined class. In a

similar fashion, the extraction operator can also be overloaded so that instances of a class can be
input just like the primitive types. The general formats for the function declaration and definition for
some generic class x are:

/ / Declaration
friend istream& operator>>(j-stream&, X&) ;
/ /Definition
lstream& operator>>(istream& stream, Xe obj)
{ //input into the fields of the object using'obj' and the dot
nnarrl.nr l-lran

return stream;)

The first argument must be a reference to the class istream, and the second must be a reference to
an instance of the user defined class. ln the following example, both the extraction and the insertion
operators have been overloaded.

OOP with C++

inc]ude< io stream>
using namespace std;
class complex
I rlnrrhla ra:l ir evsv+e tvs4, rmg;

public:
complex (double = 0.0, double = 0.0) ;
friend complex operator+(const complex&, const
friend istream& operator>>(istream&, complexc) ;
friend ostream& operator<<(ostream&, complex&) ;

inline complex :: complex(double r, double i) {rea1
complex operaLor+(const complex& c1, const complex&
{complex c;
c.real = cl,real + c2.real;
c.img: c1.img + c2.img;
rafrlrh t! l

istream& operator>>(istream& stream, complex& c)
{ return stream>>c.reaI>>c.i*g; }

ostream& operator<<(ostream& stream, complex& c)
{ return stream<<c.real<<(c.img (0 ? I n : t'+") <<
int main ()

{ cout<<'rEnter the data for 2 complex numbers\n";
^^**t^., ^1 ^4.gVILL}/ISA Ult val
cin >> c1>>c2;
if (! cin)

cerr<<t' Input error\nrr ;
else
{ complex c3 : cL + c2i

cout << trc1:tr << c1 <<"\n";
cout << t, Cz=tt << c2 <<tt\ntti
cout << ilC3-il << c3 <<tt\ntt; l
return 0;

complexc)

I.

{--
-

i.
-L, flltY - It

c.img (("itti)

o,
ut$0tl OOP with C++ Operator Overloading and . .

Output
Enter the data for 2 complex numbers
34 2t
C1 = 34i
C2 =Z+Ii
C3 = 5-3i Enter the data for 2 complex numbers

3424
Input error

7. Manipulation of String
C++ has two methods for representing strings, C-style character arrays

and the string class. C-style character alrays are a lowlevel, primitive
representation of string data. Although the string class provides more
functionality and is less error prone in use, it is not uncommon to see C-
style character affays in C++ code, so it is important to understand and be
able to use this representation. This representation is also used in C++
code to handle command line arguments. The string class, which is part of
the C++ standard library, provides methods for easy manipulation of string data.

7,1 C-Style Character Arrays
As implied by its name, C-style character arrays is the representation of string data used in the C

programming language. In C, this is the only technique for storing and manipulating string data. Strings
are stored as null, \0', terminated character a[ays. This representation has several weaknesses and
should generally be avoided in C++ programming in favor of the use of the string class.

i. A character array of sufficient size must be defined or allocated to hold the string. The array
must be at least the length of the string plus one. One byte is needed to hold the null terminator.
It is the progranrmer's responsibility to be certain that the array is large enough. The compiler
will not issue any warnings or errors if the size is too small. Errors in array size will result in
run-time errors. The program may crash, behave enatically or operate incorrectly.
At times, it is necessary to explicitly add the null terminator.
Pointers are commonly needed and used to access and manipulate string data.
When copying strings, the programmer must check that the destination array is large enough.
When adding to strings, again, the array size must be considered.

Additionally, the string class was not part of the library of early versions of C++. Programmers
typically built their own sffing classes or used C-style strings. In either case, knowledge of C-style
strings in necessary. The final reason to learn this representation is that it is used in C++ to handle
command line arguments.

ll.
iii.
iv.

ffi OOP with C++ Operator Overloading and . . .

Or
0t$0tl

7,2 String Class

The C++ Standard Library provides a string class. To use this class you must include the string
include file in your program. #include<string>

Unlike C-style strings, the internal representation of the string data is hidden by the string class.

The data is set, accessed and manipulated using the methods of the string class. The programmer
need not be concerned with how or where the string is stored. This is an example of encapsulation.
Let's see how to create and initialize string objects by studying a simple program.

IE]I5
include<lostream>
include< str ing>
using namespace std;
int main ()

{ string 51;
string S2 ("HelIo") i
string 53("Hef1o from Aboutr') i // Initialization with a C-StyIe string
string S4(S3); // Initializatlon with another string object
cout << "52: tt << 52 << endl;

endl;
anrl I .

/ / ^^ ^l-**^-r rf| / nDDr9rlrLrgrrL I

cout << tt53: tt << 53 <<

aL _ 9., one string to another
cout << ttSl: rl

/ / Def.aul-t constructor, no initiallzatlon
/ / tnittalization wlth a C-Style string

cout << ttS4: tt << S4 <<

aL -
eJ f

cout << It S 1
ral- rrrn fl.!ueq!rr vt

<< SL << endl;
// sL is resized as required.

/ / No explicit programming required.
t' << S 1 << endl;

mt&
Output

As can be seen by this example, there are several constructors for the string class. The default
constructor creates an empty string. Other forms of the constructor take C-style character alrays or
other string objects as arguments and initialize the new string with these values. Also, notice that it is
possible to assign one string to another directly. With C-style strings, an assignment like this would
need to be done in a for loop, or with the standard library function sffcpy. String Operations: The
string class supports relational operators, such as (, (=, ==, !=,)= and > for comparing strings. The
"+" operator is used for string concatenation. The subscript operator, [J, can be used to access or set

individual elements of a string. The string class also has methods; empty, to test for empty strings,

and size, to return the sffing length. Let's see how to use these in a simple program.

o,
ut$0rl OOP with C++ Operator Overloading and . . ,

mi

inc fude< 1os tream>
include < string>
using namespace std;
int main0 { string 51;

string 52("from ");
strlng S3 (trAbout") ;
string S4;
if(st.emptyO) { cout << "S1 is empty" << endl;

couL ((rrft has length " << Sl-.sizeO << endl;
el-se { cout << "No it' s not " << endl ; }
S1 : rtHello ";
cout << "Sl- now has length " << 51.size() << endf;
if (S3 < 51) // Relational Comparj_son {

cout << rrA comes before Ctt << endl-;]
54 : 51 + 52 + 53; // ConcaLenation
cout << rrS 4 : tt << S 4 << endl;
51 +: 52; / / Concatenati-on
51 += 53;
cout << I'SJ-: " << S1 << endf i / /Subscripting
cout << 'S1 [0] " << 51 t0l << endl;
cout << 'S1[1] " << 51t1l << endl;
cout <("S1 [2] " << 51 t2 l << endl;
cout << r51 [3] " << 51 t3l << endl;
cout << uS1[4] " << 51[4] << endl;
cout << uS1 [5] " << 51 t5l << endl;
return 0;

]

0utput

) String Class Methods

The string class has many methods
deleting, searching and replacing. Some
following table:

string manipulations such as appending, inserting,
the more common methods are summarized in the

for
of

OOP with C++ Operator Overloading and . . .

Or
ut$0tl

i:l

append(char .pt);

append(char *pt, size_t count);
append(string &str, size_t offset,size_t count);
append(string &str);
append(size_t count, char ch);
append(lnputlterator Start, lnputlterator End);

Appends characters to a string from C-style strings, char's
or other string objects.

at(size_t otfset);
Returns a reference to the character at the specified
position. Ditfers from the subscript operator, [], in that
bounds are checked.

besin0; Returns an iterator to the start of the strino.

.c_-str0; Returns a pointer to C-style string version of the contents
of the strino.

clear0; Erases the entire strino.

copy(char *cstring, size_t count, size_t offset);
Copies "count" characters from a C-style string starting at
offset.

empty0; Test whether a strinq is emptv.

End0; Returns an iterator to one past the end of the string.

erase(iterator first, iterator last)
erase(iterator it);
erase(size_t pos, size_t count)

Erases characters from the specified positions.

find(char ch,size_t offset = 0);
find(char *pt,size_t otfset = 0);
find(string &str,size_t offset = 0);

Returns the index of the first character of the substring
when found. Otherwise, the special value "npos" is
returned.

Find_first_not_of0; Same sets of arguments as find. Finds the index of the first
character that is not in the search string,

Find_first_of0; Same sets of arguments as find. Finds the index of the first
character that is in the search string.

Find last_not_of0; Same sets of arguments as find. Finds the index of the last
character that is not in the search string.

Find_last_of0; Same sets of arguments as find. Finds the index of the last
character that is in the search string.

insert(size_t pos, char .ptr);

insert(size_t pos, string &str);
insert(size_t pos, size_t count, char ch);
insert(iterator it, lnputlterator start,
lnputlterator end);

Inserts characters at the specified position.

push_back(char ch); Inserts a character at the end of the string.

replace(size_t pos, size_t count, char *pt);

replace(size_t pos, size_t count, string &str)
replace(iterator first, iterator last, char *pt);

replace(iterator lirst, iterator last, string &str)

Replaces elements in a string with the specified
characters. The range can be specified by a start position
and a number of elements to replace, or by using iterators.

Size0; Returns the number of elements in a string.

swap(string &str); , Swaps two strings.

Using String Methods: The following program illustrates the use of some of the methods of the

string class.

O"
$$0tl OOP with C++ Operator Overloading and .

inc lude< i ostream>
include< str ing>
using namespace std;
int main ()
{ strinS S1 (rrHel]-o WorLd") ;

qJ-rina Q?/llfrnm Alr^rr.t. [\.
v e: lrrY v- \ r! vrrr rrvvsu / ,

string S3 (rrBye") ;
nhar c1 f l : lllTnirzarcall

size_t index;
cout << 51 << endf;
index : Sl"find('W') i //Returns an iterator to W in Worl_d
Sl-.erase (index, l-) ; / /St is now "Hello orld'r
cout << 51 << endl;
stri-ng::iterator begin = Sl.begi-nO + Sl.find_Iast_of ('o')i
string: : j-terator end = SL.end O ;
S1. erase (begin, end) ; / /Erases "orId"
cout << 51 << endf;
q1 lnnanrl /n1 \ .vr . srtsvrre \ vr / t
couL << 51 << endl;
S1. cl-ear () ;
i f / CT amn.l- rr / \ \r! \vr. vrrrFej \ / /

{ cout << "S1 has been
cout << "fts size is

Sl.push_back(rH') i
Cl incart- /'l tral1nw\.
v+.4..ev!L\r/ vLL\J I t

cout << 51 << endl;
51 +:' ';
51 +: 52;

/ / Annends rrlln i rrerSett

,// Clears S1;

cfearedrr << endl;
" << 51. s j-ze O << endl; I

/ /H is a char
//"eLLo" is a C-styLe string.
/ /AAA r eh.^6

/ / ConcaLenate 51 and 52
cout << 51 << endL;
begin = Sl.beginO + Sl.find(t'About")1
end : Sl. end O ;
q1 ran l:aa /hani n anA lr]^hhrr \ .v \vvYrrrt vrrs, vvrtlL L

cout << 51 << endl;
S1. swap (S3) t
cout << 51 << endl-;
rol- rrrn fl.5 v e s! rr v t

]

8. Type Conversion
While dealing with assignment statements

converted to other data types through something
and calculations, data types can

that is called type conversion.
sometimes be

ffi OOP with C++ Operator Overloading and . . .

o,
UFION

Implicit Conversion: Conversion that happens without the

programmer specifically asking for it is called as implicit
conversion. Programmers run into problems during implicit
conversions because they can be unaware of what is actually
happening during execution of their program until they examine the

code very carefully. For example: lf y and z are float, and a is int,
when the statement z = a + y is executed, the value of a will be

stored in a temporary memory location as float for use in the rest of
the statement. Then, the addition is done (in float form) and finally,
the result stored in z. So what happened? [a was implicitly
converted into float during the execution of the statement]. Another
form of implicit conversion may take place during assignment, but
not necessarily from a smaller type to a larger type. Converting by
assignment: It is a usual way of converting a value from one data

type to another by using the assignment operator (=).

For example: int p;
fioat q;

ln the above example, p is an integer type and q is a floating point data type and we have to

show that whether p-q or not. This means that we can convert a value from one data type to
anotherjust by assigning a float variable's value to a double value variable, a char variable's
constant to an int variable or an int variable to a float variable. In C++, converting by

assignment operator is not recommended to the programmer, as it will truncate the fractional
or real parts and one may not get the desired results. To avoid this, there is a special way of
converting one data type to the other, by using the cast operator.

For example: int a;
IML P - J.Jt

!IUdL 9 _ J. V,
.i-+ .l

-
t.arlL g - -t

a=b*c/d;
cout << ai

Output: 8

ln the above example first of all, d was implicitly converted to 2.0 during b * c / d. The result

of that multiplication and division is 8.75, but a was declared int, so a was implicitly converted

to 8 during assignment.

ii. Explicit Conversion: Conversion requested by the programmer; sometimes called as

typecasting or explicit conversion. While programmers are unaware of implicit conversions,

they are completely in control of explicit conversions.

Typecasting can be easily accomplished and it has an easy to use form which is:

type (varlable) 0r type (expression)

where, type is whatever data type you choose and variable is the variable you are converting.

It simply takes the value of variable and converts it into the type specified.

o"
utSt0tl OOP with C++ Operator Overloading and . . .

Example I
double d;

int k;
d: 12,78;
k = int(d);
d = double(k);

-->k=12
--> d = t2.0

Example 2
int m = 1,0,

Aarrl-r1 a n.vvsv-v at

q,=m / ni
r = rlnrrhlo/m\
r=rt/ni
q - doubfe(m)

n=4rri

2.4
2
a

2.5

Y-

Y-

Solved Programs

;-

t$igffi#il r,',,lfl ,"

T.,nl,)','t, .,F-'LOAT'. t.;, .,.,,. " ',;,.: ,',
1,,,,4df.nglllhe.rii

,F: .;,O-Jl{,, T:r1 ...SF-1,i1

CUS'. :s,h,b]r+i)#r,,f , i.l

fitiiirf;*{ffi iir

+r

til r- .r,.i

o,
utEtotl OOP with C++ Operator Overloading and . . .

Example I
double d;

int k;
d = 1,2,'78;
t< - int (d) ;
d = double(k);

k=
i-

72
t2 .0

Example 2
int m = l,0r

rlnrrl-r1 a a.
vvgvfv Y,

q=m/ni
r = doubl_e (m)
r=rt/ni
q - double (m)

n=4rri

Y
r
r
q

Solved Programs

Or
urSt0tl OOF with C++ Operator Overloading and . . .

*.itr$- tot

OOP with C++ Operator Overloading and

r,e4y

{rnb.reme *+,"'i* i t:r-.,

.ir rii: re:o:rttr{,<i: ner:ln"ii*e:r;iin

:.f;tfiffrif*"**ff

tt,,.,.!,, r wta$ a'round

o"
ur$0rl OOP with C++ Operator Overloading and . . .

$int):,i

i{'ab.Ier,wllh our current dlsiill

'r"*r*

the copy'of t2.-' r
','' r;:,,;'1,

'',:,:,,;..'.1i '',..::r-r.lr..t-'.,:

6. W'tt€ the 'vI I rw . l1rF pllrvfr .Lrflat..5T+!,.u..rF-r-,4{1..$0.T,,.#1..!l|T:

stact'iln* should,t- exce5.tim.'w.1fi,[1

Solutl,on, :lt,.i'l...rtr;'.-,,rfi.ii

h r,:**:5mmri; "'ol"nttitu'it
'1ilffi

n#fig,"t4.;tr+.]i".ifii.+"r' r iiifiiiff t:ii-,j.,
l+ils*ti'.$t#.'i'..,: i.i.tfl,",rii":i:r'1"':;'.; 'i. ",-fi.;.it.;

t'.."''i il
'i........i.'.i..''''.'....'..''...'..:'.:.:j i,ll

intrta.rrlffiX'.Jr.:.,to.pr;,,...,.-,,'.r...1,,,,i,..:t'.r',..r'1 ;r'r1':'1.;;::ir.t,.,.'..ri.:,.i,.i,.-.''r,...;..'.-1....,....i"'',i,. l_t-',4,-''.i.''..1,','.i,,,..t'iiirfj.fi,i

:r.:'r:i. ,r.1.:i '. :!rr. .,:.rr r ":I ' :ii'.'r': r t.t.r:..:r':,:r'::.-i:

VQ1 :trd.iio,per,iartg*,ior+,{.}.:

if (ltqP,,,*q.
{ ',cbu*t<.".t,ni

?l5bi

itil?'iiii
CIfi>)-€I€ir

iuiili,;n :.r..,

efe$enfl
:-: . i'.:j

r;:l

o,
ur3r0i OOP with C++ Operator Overloading and . . .

r.ii, ;j

OCIe ref;srv.-..:i f,i.t f ,, .1.:,, . .:.i.. i

'ir
.iti,,,iil,i.''li.fi

na<fsi l.sopI i*.*
ir.r:i rt:.t.:r',..rh.i.,..: , 'ii* *dffiir;ri i: :

',lli

ExeRcrsEs
A. Review Questions

2. List the C++ opdratbrs that cannot be 6verloaded?3. Explain the limitations of operator overloading.

!. P19l111 thq ry,t-"f of operator overloading. -
I Pxflain how thgprein'crement and postificrement operators are overloaded.|'. rrogrammtng ExerclsesB. Pr6grammine Exercises I -'------------- -r------*

l'-Tffi1ry ffi1' rvrlre L++ pro$am uslng operator overloadrng to tind tactorial of qiven nz. wnte a U++ program to perform the following using operator overroadinsr. Area of circle ii. Circumference oT a'circle iii.iv. Area of a triangle v. Perimeter of
iii. -Area of rectangle

ii'l
publfcr

t lfilllfti fiffi
r 'r'*+'i ''" ""

;gf **ffi i'#;'*-iiilri#'
{;nt't i:tlliii",';

'.i.r.,::l

_co,u.t{<'t.tso t n, .a''ne idjr,f'f.eifnt :ij l]l

ffi*;i;';'-.,
i',x

Y*:",f, r;iffi *mx*r*;at:m,,l,iitffi *'t;ffi "
r't

rfi3til

entqnce

l. lntroduction
Inheritance is said to be the feature that distinguishes object-oriented programming languages

(OOP's) from other kinds of languages. Inheritance is often described in terms of "is-a" relationships
and supports the concept of hierarchical classification. The mechanism of creating new classes from an
existing class is called as inheritance. The old class or existing class is known as base class or parent
class and the newly created class is called as derived class or child class. In some OOP languages
such as Simula, the base and derived classes are called as super and subclasses respectively.

You can again inherit from a derived class, making this class the base class of the new derived
class. This leads to a hierarchy of base class/derived class relationships. If you draw this hierarchy
you get aninheritance graph.

SunerClass

inherit-from

Sub9lass

Figure 8.1: A simple (single) inheritance graph

In the figure 8.1, class A inherits from class B, so B is called superclass of A and A is called
subclass of B.

8r1
Or

ut$otl

ffi OOP with C++ lnheritance
O"

utfl!i

A common drawing scheme is to use affowed lines to indicate the inheritance relationship
between two classes or objects. In our examples we have used "inherit-from". Consequently, the
arrowed line starts from the subclass torvards the superclass as illustrated in the above figure 8.1
(some authors show the arrow in opposite direction meaning "inherited from". In C++ the word
"inherit-from" are replaced by a colon.

The concept of inheritance provides the idea of reusability. This means that we can add additional
features to an existing class without modifying it. This is possible by deriving a new class from the
existing one. The new class will have all the features of the existing class (base class). It can also add
some more features to this class.

The main advantages of inheritance are:
. reusability of the code,
. to increase the reliability ofthe code and
. to add some enhancements to the base class.

2. Single lnheritance
Single inheritance is the process of creating new classes from an

existing base class. The existing class is known as the direct base class and
fhe newly created class is called as a singly derived class. In case of single
inheritance there is only one base class (Referfigure 8.1).

Single inheritance is the ability of a derived class to inherit the member
the existine base class.

2.1 Defining the Derived Class

The declaration of a singiy derived class is same as that of an ordinary class.

The general syntax of the derived class declaration is as follows:
nlrqc rlorirrod-alaqc-nrmo . nrirral- a/nrrl-r'l i a/nraf arlar'l l-rrca al:cc-Lvt y_

{ prlvate:
/ / daLa members

pubJ-ic:
/ i daLa members
// methods

nrn I a^f aai .

/ / data members

where, the colon indicates that the derived-class-name is derived from the base-class-name.

The base-class access specifier must be either public, private or protected. If no access specifier is
present then the access specifier is private by default if the derived class is a class. If the derived
class is struct, then public is default in the absence of an explicit access specifier.

functions and variables of

o"
ut$0rl OOP with C++ lnheitance

For example: The following program illustrates the declaration of a single inherited class. The
base class consists of two parts: data member and member function. The data members consist of
name, rollno and sex and are defined as a private group. The member functions getdata0 and
putdataQ are declared in the base class. The rnembers of a base class can be referred as if they were
members of the derived class.

class baslc_info{
private:

char name 120) ;
long int rollno;
char sexp

public:
void getdata O ;
void Cisplay O ;

); / / end of class definition
cl-ass physical-fit : public basic-info / / public derivacion
{ private:

float height i
float weiqht;

public:
void ge-"daca () ;
void display O ;

I: // end nf cl:ss definition)f

The derived class inherits the properties of its base class including its data member and member
functions. The physicaliftt is a derived class which has two components- private and public. In
addition to its new data members such as height and weight, it may inherit the data menbers of the
base class. The derived class contains not only the methods of its own but also of its base class.

A program to read the derived class data members such as name, roll number, sex, height and
weight from the keyboard and display the contents of the class on the screen.

// nr:rr^tc: n^f inhefitable

/ / pubLLc; ready for inherltance

Itll-,g
#include<iostream>
include< i oman ip>
using namespace std;
class baslc_inco{

char name [20] i
Iong int rollno;
^L-- ^^...vttdt DvA,

public:
void getdata O ;
void display O ;

]; / / end of class definition

/ / rr irrrf a. n^f
F! f w e ev t

// ntt]nlia. rorArr! vsuf

nrrhlin h:<in infn // ntt]nlirv / / IJqvrre

inheritable

for inheritance

derivationr-l:ss nhrrsinel fit :

{ private:
f I n:i hoi ahf .

f 'l nrl- r^rai nlrl- .

n"l-. 1.ia.Yqprre.
void getdata O ;
r,^r,'l /l.i^^1 -,r/\.vvru urDPray \, ,

OOP with C++ lnheritance

] : / / end of cl:.Ss def inition)f

void basic_info : : getdata o
I cnrri << rrF.nfar .\nrt.q llolLtg. \rl ,

din \\ nima.Z rrq.rlv,

cout << ItEnter ro11 no:\ntt;
ni n::rnl l nn.lv!rrlv,

cout << ItEnter a sex : \n tt i
cin>> sex;

)
void basic_info : : display o
{ cout << name

cout << rollno << tr w '
cout << sex

]
rrairi nhrrqin:l fif ceiriefr/\
I hrcin infa aa+Arrr/\.9euuoLa \,/ t

cout << 'rEnter height: \n't I
cin>> height;
cout << "Enter weight: \nrr l
nin :> r^raiah1-.

l
rrair{ nhrrcina1 f it dienlrrr/\grvv+gJ \,

I 1-r:ci n i nfn n.i ^^1 -,, / \ ,urDIJrqy \,/ t
cout << setprecision (2) ;
cout << height << " ",
cout << wei-ght << rr " i

)
void main ()

I physical-fit a;
cout << "Enter the

!-+- /\.d.vsLu4Lq\,i,

cout << rl

€al lnuri nn infnrm-f '
^h\hrr.!u!r9w!ll9 f lr!urrrLaL!vlr \rr ,

cout << tt Name Rollno Sex Height rrr^l ^Lr \ *rl .vrcrvrrL \rr t

il.

fr:itILJI,*
\n

cout << rr

cout << rr

^ tt ^*t ^., / \ .d.uaDPrdy \,/ t
cout <<endl;

0utput
Enter the following information
Enteraname :abc
Enterrollno : 13

Enter sex : m
Enter height: 134.54

Enter weieht: 70

Name Rollno Sex Height Weight
m t34.54 70I3abc

Or
utt|0i OOP with C++ lnheritance

2.2 Types of Base Classes

A base class can be classified into two types, direct base class and indirect base class.

i. Direct Base Class

A base class is called a direct base if it is mentioned in the base
list.
For example: Following are valid derived class declarations:
1. class base 2. class baseA

{

l.
class derived : public base cl-ass baseB

{_
j;

class derivedC
tr: caA nrrl.r'l i ats qv+ re

{_

where class base is a direct base

j,
where both classes baseA and baseB are the
direct bases.

A class may be derived form any number of base classes.
For example
cLass baseA
t

class baseB
{

Ji
class baseC
t

class baseD
(

class derivedE : publ1c baseA, public baseB, publlc baseC,public baseD
{

The following are invalid declarations:
1. A class which has been named but not yet declared cannot be used as a base class.

cl-ass baseA

;:.a1ter:iveoe
: public baseA

/ / error
j;

The base class baseA is undeclared and an error message will be displayed by the
compiler.

1,.

. nrrl.rl i n. Fgva4v

baseB

3.

OOP with C++ lnheritance
O.

ut|er

2. A class should not be specified as a direct base class of a derived class more than once.
claqq haqaA
It-

j;
class derivedB : public baseA, public baseA

I;
The base class baseA has been declared twice as the direct base of the derived class
derivedB. It is an invalid way of consffucting a derived class in C++.

Indirect Base Class

A derived class can itself serve as a base class subject to access control. When a derived class
is declared as a base of another class, the newly derived class inherits the properties of its base
classes including its data members and member functions. A class is called as an indirect base
if it is not a direct base, but is a base class of one of the classes mentioned in the base list.
For example: Following are the valid declarations:
1. cl-ass baseA

l;
class derivedB : public baseA

l,
claqq rlorirrodl : nrrlr'l ir- rieri rredl

Note that the class derivedB is the base of the class derivedC that is called as an indirect
base.

A class may be specified as an indirect base more than once. For exarnple
^1-^^ L^^^iUI4DD ldDEA

{

class baseB : public baseA

I.

cl ess lrascC : nublic baSeA

class derivedD
{

: public .baseB, public baseC

il.

2.

O"
util0t OOP with C++ lnheritance

The class baseA has inherited both the derived classes baseB and basec. in the sense
that inheritance means building new abstractions from the existing ones, where one
class inherits data and member functions from another.

2.3 Types of Derivation
We know that inheritance is a process of creating a new class form an existing class. While

deriving the new classes, the access control specifier gives the total control over the data members
and methods of the base classes. A derived class can be defined with one of the access specifiers,
such as private, public and protected.

i. Public Inheritance
If the access specifierfor a base class is public thcn
. All public members in the base class remain public in the

derived classes.
. All protected members in the base class remain protected

in the derived classes.
o ln all cases, the base's private elements remain private to the base and are not

accessible by members of the derived class.

The general syntax of the public derivation is
cfass base_class_name
{

Il
class derived_c1ass*name
{

z ltubtle base_class_name

F ft" following program objects of type derived can directly access the public members of
base:

#include< iostream>
using namespace std;
class base{

int J-, j ;
public:

void set (int a, int b)
{ i=ai j=b; }

void show ()
{ cout << i << tt tf << j << tt\ntti

}t.
cl-ass derived : public base{

1nt k;
public:

derived(int x) {k : x;i
void showk ()

{
cout << k << tt\ntt;

)

int main ()

{
derived ob(3);
ob. set (t ' 2) ;
ob. show O ;
ob. showk; / /
return 0;

/ / access member of base
/ / access member of base
uses member of derived class

ii. Private Inheritance

When the base class is inherited by using the private access specifier,

o All public members in the base class become private in the derived classes.

. All protected members in the base class become private in the derived classes

o All private members in the base class remain private in the base class and hence are

visible onlv in the base class.

The general syntax of the private derivation is

class base-class-name

1.
)l

class derived-cfass-name : ptivatc base-class-name
..::

tr

For example: The following program will not even compile because both setO and showO are

now private elements of derived:

/ / Ynis program won't comPlle
include< i os tream>
uslng namesPace std;
class base{

.inr .i i.rrrL rf),
public:

voj-d set(int a, int b)
{ i=a; j:b; }

void show ()

{ cout << i << * rr << j << tt\ntt; }
t.

Q,
utd0tl OOPwith C++ lnheitance

/ / pubJic elemenLs of base are private in derived.
ctais derived : prj-vate base{

l -5 1..III U A ,

publlc:
derived(int x) {k = x;}

void showk ()

{ cout << k << '\n"; }

int main ()
{ derived ob(3);

ob. set. (L,2) ;
ob.showO i
return 0;

)

/ / error, can't access set ()

/ / error, can't access show ()

t-l
ltll:

Note: When a base class access specifier is private, public and protected members of the base

become private members of the derived class. This means that they afe still accessible

by members of the derived class but cannot be accessed by parts of your program that

are not members of either the base or derived class'

iii. Protectedlnheritance
If the access specifier for a base class is protected then

. All public members in the base class become protected in the derived classes.

. All protected members in the base class remain protected in the derived classes

o All private members in the base class remain private in the base class and hence it is
visible onlv in the base class.

The general syntax of the protected derivation is
nl:ss lr:sa r:la.s.q name
It

'
'... t,

class derived-class-name z psotoctrd base-class-name
I

1..)f

t-l
IL-JI-4

inc lude<iostream>
using namespace std;
class base{

nrni- anf arl .

.inf i i.rrrL rr J,
nrr'l,r'l i n.

rrni d set i i (intwv+s vve+J \-

{ i=:: i=l-r:t r-q,) p,

vold showij ()

{ cout << i
!,

/ /private to base, but accessible by derived

a, int b)
)

OOP with C++

// inherit base as protected.
cl-ass derived : private base{

int k;
public:
// derlved may access base's i and j and setijo
void setkO { setij(10, 1-2l; k = i*j; }
/ / may access showij () here
void showall ()
{ cout << k << " "; showij O; }

t,
int main ()
{

rlor i rrarl nh.
vg vv,

// ob.setij(2,3); //
ob.setk0; //
ob.showalLO; //
// ob.showijO; //
return 0;

)

i1IegaI, setij O is protected member of derived
ok, public member of derived
ok, public member of derived
i1legal, showij () is protected member of derj-ved

As you can see by reading the comments, even though setij0 and showijO are public
of base, they become protected members of derived when it is inherited using the
access specifier. This means that they will not be accessible inside main0.
The following table shows the swnm^ary of above rule:

r-n

-members
protected

The various functions that can have access to the private and protected members of a class are:
a. A function that is a friend of the class.
b. A member function of a class that is a friend of the class.
c. A member function of a derived class.

2.4 Ambiguity in Single Inheritance
Whenever a data member and member function are defined with the same name in both the base

and the derived classes, these names must be without ambiguity. The scope resolution operator (::)
may be used to refer to any base member explicitly. This allows access to a name that has been
redefined in the derived class.

Table 8.1: Access rlghts and Inherltance

On
u$0ll OOP with C++ lnheitance

For exarnple: T\e following prognm segment illustrates how ambiguity occurs when the

getdnta) member function is accessed from the main) program.

class baseA
{ public:

int i;
getdata () ;

]i
class baseB
{ public:

'in+ i.+rr9 4,
getdata () ;

);
class derivedC : public baseA, public baseB
{ public:

inr- i.4Ir 9 4,

nol-daf a I \ r
Yvevsvs \, ,

i
void main ()
{ derivedC obj;

obj . getdata;
t,

The members are ambiguous without scope operators. When the member function getdata0 is

accessed by the class object, naturally, the compiler cannot distinguish between the member function

of the class baseA and the class baseB. Therefore it is essential to declare the scope operator

explicitly to call a base class member as shown below:
obj . baseA
obj . baseB

getdata () ;
getdata () i

A program to demonstrate how ambiguity is avoided in single inheritance using scope resolution

operator.

tT--11
[-ll
--E

/ / ambiguity in single inheritance
include< ios tream>
usj-ng namespace std;
alrec h=qoA I

nri rrai- o.
i n+ i .rrr u f t

nrrl.r'l i n.
rrai d nof rle1- av vrv Yv
rraid rli qnlarr
v vrv g4sr+$J

I.t,
al a<q lraqaR{

nri rrr'l- a .

i n+ i .
Ltt, J t

nrrl.r'l i n.
rrni d cal-rl:tav v4s Yv

void display
1.
cl-ass derivedC ;

{ };
public baseA, public baseB

int x);
t;

LtLw I t a

void baseA :: getdata(int x)
{ i:x; }
void baseA : : display o
{ cout << "val-ue of i :il << i << endl;
rro'i rl h:eaP aol-ri:J-:/inl- rrI\3.ru J,

{ j=y; }
void baseB : : display o
{ cout << rrvalue of j =il << j << endf ;
rrnid mein/I
I rlar i rzarlf' nl-'-i n .
r ge! vp)el

int x, y,
cout << "Enter a val_ue for i: \n";
cl_n >> x;
ol-ric hreaA daJ-d.J-r /vl .

Yvesseq \^/ t

// member is ambiguous without scope
cout << 'rEnter a value for j: \n";
ai n \\ rr.v... .. J ,

nh'ic l-rreoP, daf rlrtr 1rr\ .Yvusquq _y / ,
objc.baseA : : displ-ayO ;
objc.baseB : : dlsplayO ;

a

0utput
Enter a value for i:
50
Enter a value for i:
60
value ofi = 50
value ofj = 60

3. Multiple lnheritance
Later versions of C++ introduced a "multiple inheritance" model for inheritance. In a multiple-

inheritance graph, the derived classes may have a number of direct base classes, i.e., multiple
inheritance is the process of creating a new class from more than one base classes.

Consider the following figure in which the derived class C inherits properties of the base classes
A and B.

Base class Base class

Derived class

Flgure 8.2 : Multlple Inherltance

Q"
$3tti OOP with C++ Inheitance

The syntax of a derived class with tnultiple base classes is as follows:
f basel' access sPecifier base2 :

I

: : '.
/ / body of derlved class

l

For example
class point
{

.);
class string
{

. T;
class drawablestring : public point, public string
{

. tf

The class drawablestring is derived from both classes point and string.

Multiple inheritance is a derived class declared to inherit properties of two or more parent classes

(base classes). Multiple inheritance can combine the behaviour of multiple base classes in a single

derived class. Multiple inheritance has many advantages over the single inheritance such as rich

semantics and the ability to directly express complex structures. In C++, derived classes must be

declared during the compilation of all possible combinations of derivations and the program can

choose the appropriate class at run time and create object for the application.

Difference between Single and Multiple Inheritance is as follows:

In single inheritance, a derived class has only one base class while in multiple inheritance, a

derived class has more than one base classes.

In single inheritance hierarchy, a derived class typically represents a specialization of its base

class whiie in multiple inheritance hierarchy a derived class typically represents a combination of its

base classes.

The rules of inheritance and access do not change from single to multiple inheritance hierarchy. A
derived class inherits data members and methods from all its base classes, regardless of whether the

inheritance links are private, protected or public.

Consider the following definition of two base classes

class A{ / / base class 1

.lt
class B{ // base class 2

.ti
Form the above definition,

i. multiple inheritance with all public derivation can be defined as

class derivedC : Public A, Public B
I

ii. multiple inheritance with all private derivation can be defined as

class derivedC : private A, private B
{

. j;
iii.. multiple inheritance with all mixed derivation can be defined as

cl-ass derivedC : private A, public B
I

. I;
A program to illusffate how a multiple inheritance can be declared and defined. This program

consists of two base classes and one derived class. The base class basic_info contains the data
members: ntlme, rollno and sex. Another base class academic-fit contains the data members: course,
semester and rank. The derived class financial assit contains the data member amount besides the
data members of the base classes. The derived class has been declared as public inheritance. The
member functions are used to get information of the derived class from the keyboard and display the
contents of class objects on the screen.

inc lude<ios tream>
#lnclude<iomanip>
using namespace std;
class basic_info
I nr i \rt I a .t r-*

char name i30l ;
long int rollno;
char sex;

n"1-. 1i^.
,,^.1 j ^^+ i ^+ .vvrs 1;sLqeua O i
void display0; I; // end of class abfinition

class academic_fit
{ private:

char course [30.] ;
char semester [10] ;
int rank;

public:
void getdata O ;
void displayO;

class financial_assit
i prlvate:
, float amount;

public:
void getdata O ;
void displayO; I ; / / end of class definition

void basic_info : : getdata o
{ cout << 'rEnter name : \n tt ;

cin
cout << t'Enter roll_ no:\n";
cin
cout << rrEnter sex:\n"
cin >> sexi]

void basic_info :: displayO;
{ cout << name

I; / / end of class definition
: private basic_info, private academic_fit

o,
u$0i OOP with C++ lnheritance

couL << rollno << rr " i
cout << sex

void academic-fit : : getdata o
{ cout << t'Course Name (MBA, McM,McS,

ci-n >> course;
cout << "Semester (First/Second etc)
cin >> semester;
cout << rrRank of the sLudent \n";
cin >> ranki)

void academic-fit :: dj-splayO;
{ cout << course

cout << semester
cout << ranK << tr tti

)

void financial-assit : : getdata o
i basic-info : : getdataO ;

academic-fit : : getdataO ;
cout << "Amount in rupees\nt';
cin >> amount, I

void finanacial*assit : : display o
{

Lr=cia infn displ_ayO;v_vr_$f \, ,

academic-fit : : displayO ;
cout << setprecision(2) ;
cout << amount << tt ";)

void main ()

{ financial-assit fi
cout << I'Enter the following information for financial assistancerrl
f.getdata();
cout << endl;
cout << "Academj-c Performance for Financial Assistance\n"i
cout << tl

Course Semester Rank Amount\n'r I

MCA etc) \n";

cout <<
cout <<

cout << n

trName Rollno
n

Sex

f.displayO;
cout << endli

\nn

ranttJl:
Output

Enter the following information for financial assistance

Enter name
ABC
Enter rollno
23
Enter sex
M
Course Name (MBA, MCM, MCS, MCA etc)

ffi OOP with C++ lnheritance
Or

utft0[

MCS
Semester (First, Second etc)
First
Rank of the student
20
Amount in rupees
t2w
Academic Performance for Financial Assistance

Name Rollno Sex Course Semester Rank Amount
ABC 23 MCS First 20 l.2e + O3

Ambiguity in the Multiple Inheritance
To avoid ambiguity between the derived class and one of the base classes or between the base

class themselves, it is better to use the scope resolution operator :: along with the data members and
methods.

For example: The following program segment illustrates how ambiguity occurs in both base
classes and the derived class.

/ / Anbiguity in multiple inheritance
inc l-ude<ios tream>
using namespace std;
nlaq< l.rrcaA

{
public:

l_nE ai
I;
class baseB
{

public:
int a;

t.
cLass baseC
i

public:
int a;

I;
class derivedD : public baseA, public baseB, public baseC
{

public:
lll L a t

l.

rzni rl ma i n / I
{

rlar i rrar{D nl-r-irl .

objd.a = 10; //Iocal to the derived class
)

M

O"
utdoll OOP with C++ lnheritance

Suppose one intends to access the data members of the base classes, then conflict occurs between

the base classes themselves and the compiler cannot distinguish between the calls. It is upto

programmer to avoid such conflicts and ambiguities. Therefore, it is better to use the scope operator

to avoid such ambiguities.
void main ()
t

derivedD objd;
objd.a : 10;
objd.baseA: ta = 40;
objd.baseB::a : 60i
objd.baseC::a : 80i

)

A program to demonstrate how ambiguity is avoided in multiple inheritance using scope

resolution operator.

r-ittlJl.&

/ / ambiguity in multlple inherit.ance without scope resolution operator
include< io stream>
using namespace std;
al aqq haqaA

{ public:
1nt a;

t.
class baseB
{

public:
int a;

t.
class baseC
{ public:

int a; l;
cl-ass derivedD :

{ public:
int ai I;

void main ()

{ darirreriD ohid:t se-

objd.a = 10;
nl.riA l-rrcaA..avrJv.
nl.ri^ hr call . . avvjv.

al.riA ha carr . . avvjq.

cout << "Value
cout << endl;
cout << "Value
cout << endf;
cout << "Value
cout << endl;
cout << "Vafue
cout << endl;
cout << endf;

pubtic baseA, public baseB, public baseC

/ / aooaeci ncr thc base cfass A membert I svvvpvr..Y

/ / aoae<s. i no thc base cf ass B membert I svvvvv+.rY

/ / aaaes,e,i no the krase r:l ass C membgr| | qvveeesrrY

of a in the derived class =" 11 objd.a;

of a in the baseA :" 11 objd.baseA::a;

of a in the baseB :" 11 objd.baseB::a;

of a in the baseC :" 11 objd.baseC::a;

t-il
IL-JI:

OOP with C++ lnheritance
Q,

UFOi

0utput
Value of a in the derived class = 10
Value of a in the baseA = 20
Value of a in the baseB = 30
Value of a in the baseC = 40

4. Multilevel lnheritance
Multilevel inheritance means a class is derived from another derived class. Figure 8.3 shows class

'A' which serves as a base class for class 'B' which in turn serves as a base class for class 'C'. Class
'B' is called as intermediate base class as it acts as a link between A and C. Chain ABC is called as

inheritance path.

Declaration of multilevel inheritance :
^f -^^ n (I

ClassB:publicA{
/-laec f- . nrrhlia tr It.

/ / Base Class
. .] , // B derived form A
. .] ; // C derived form B

Class / Base Class

Intermediate Super Class

Sub Class/ Derived Class

Flgure 8.3 : Multllevel Inherltance

Let us consider the simple example. Assume that the test results of a batch of students are stored
in three different classes. Class student stores the rollno, class marks stores the marts obtained in
three subjects and class result contains the total marks and percentage obtained and access the rollno
of students through multilevel inheritance.

inc lude< i-os tream>
rrqina n:h6ehtda..*.,.-,r*-- sEq;
al:ec cl-rlrrani-I

hr^fa^J-aA.
in+ -^1 1-^.rltu !vrJrlvt

public:
rrnirl aal-nn/int-\.v v4s Yv errv \ +rr e,
r:aiA nrrfna/rrniA\. l.vvfu }/surrv\vvru/r Jf

void student :: getno(int a)
{ rollno : a; }
void student : : put.no o
{ cout << ttRoll Number: rr <<
cfass marks : public student
{ protected:

float m1 , m2,m3;

ro1lno << n\nn, I
/ / first level derivation

Q,u||]l OOPwith C++ lnheritance

nrr}. l ia.

void getmarks(float, fl-oat, float)
void putmarks (void) ; \;

void marks : : getmarks (float x, float y,
{ mL-x;

-O - 'r.Lrra - L
m3=zi I

void marks :: putmarks o
{ cout << frMarks in m1 := 'f << m1 <<tt\ntti

cout << rrMarks in m2:= tt << m2 <<'r\n";
cout << "Marks in m3:: r' ((m3 <<tt\n";

class result : public marks / / Second
I nri rt.l-a.(Fra

float total;
f l-oat percentage;

public:
void display (void)

f I art- z\

)

leve1 derivation

ti
void result :: display(void)
{ total : mL + m2 + m3;

percentage = total/3;
putno () ;
putmarks () ;
cout << trTotal::rr << toLal << tt\ntt.;
cout << I'Percentage::r << percentage << rt\p't1

i
: -! *^ I - / \I tr L r[arrr U
{

result studentL, / / object studentl is created
studentl.getno (30) ;
studentl.getmarks (40.5, 60.0, 80.0) ;
studentl.dispLay O ;
return 0;

)

Output
Roll Number := 30
Marks in ml := 40.5
Marks in m2 := 60.0
Marks in m3 := 80.0
Total := 180.5
Percentage := 60.t7

5. Hierarchical lnheritance
Hierarchical inheritance comes into picture when certain features of one level are shared by many

other levels below that level. As an example, consider a hierarchical classification of accounts in a
conrmercial bank as shown infigure 8.4. All accounts possess certain common features.

OOP with C++ lnheritance
o,

utEt0i

In C++, such problems can be easily converted into class hierarchies. The base class will include
all the features that are cornmon to the subclasses. A subclass is constructed by inheriting properties
of the base class for the lower level classes and so on.

Flgure 8.4: Classiflcatlon of bank accounts (Hlerarchlcal classlflcatlon)

Consider the following program:

r-Tl
ILJI

-#incl-ude<iostream>
uslng namespace std;
class account
I nrnf anl- arl .
t ts!vuvvevs.

i nirlru qvvrrv,

char accname [20] ;
public:

void getdata O ;
vold displaydataO; I;

void account : : getdata o
{ cin >> accno;

cin >> accname;)

void account : : displaydaLa o
{ cout << accno << tt\ntti

cout << accname << tt\ntti
l.

class withdraw : public account
I nri \r.ta.
L f r +

€1^-r ^Fr.I.|L dllLLt

pubI1c:
void get ()
I R^+A ^+^ / \ .1 \JsLqqu4\,, t

ci-n >> amt;]
void display ()
{ displaydata O ;

cout << amtl)

t;
class balance : public account
I nri\r.f6.(tsrr

Or
0tftoi OOP with C++ lnheritance

float balamt;
public:

void getbal ()
{ cot-r{rtr / I .
t Yveeses \, t

cin >> balamt;)
void dispbal ()
{ displaydata O ;

cout << balamt, j
];
void main ()
{ wlthdraw w;

h:l enaa h.
vg3g..vv v,

w.getO;
w.displ-ayO;
l^ -^rL-l /1.!.v9LlAr 1,, ,
b.dispbal () ;

] ffil:
0utput

For w
100 Savings Account
100 Savings Account
For b
300 Savings Account
300 Savings Account

r2OO (Inpu|
t200 (output)

25000 (Input)
25000 (output)

In the above program the accno and accname arc the cornmon properties which are shared by
each new class, i.e., withdraw and balance.

5. Hybrid lnheritance
To design a program sometimes we need to apply two or more types of inheritance.

For example: Consider the case of processing the student results assume that we have to give
weightage for extracurricular activities like sports, drawings etc. before finalizing the results. The
weightage for exhacurricular activities is stored in separate class known as extra. The new
inheritance relationship between the various classes would be as shown in the following figure.

Flgure 8.5 : Hybrld Inherltance (Multllevel, Multlple Inherhance)

ffi OOP with C++ lnheritance
Or

uft![

tT=-]
il-l I

- Program for the lmplementatlon of both multllevel and multlple lnherltance.
include< iostream>
using namespace std;
class stduent{

protected:
in+ ral Inn.v+4rrv,

nrrl-rl i a.

void getno (1nt) ;
void putno (void) ;);

void student :: getno(int a)
{ rollno = a; }
void student : : putno o
{ cout << "Roll Number: tt << rollno (("\n"i I
class marks : publi-c student
f --^r^^l^i.I Pr9UsLLeu.

float mL, m2rm3;
public:

void getmarks(float, float' float) ;
void putmarks (void) ; I;

void marks :: getmarks(fIoat x, float y' float z)
{ ml-=x;

m2 = yi
m3 = ziI

void marks :: putmarks o
{ cout << trMarks in mi- : = "

cout << rrMarks in m2:: "
cout << trMarks in m3:= tt

cl-ass extra
.l nrnianioA.
t ts!vuvvevv.

float m4i
public:

rznirl aal-avtrr /f ln:f elvv4s Yv s \--vee v,

{ m4 = s;}
void putextra (void)
{ cout (< 'rExtra Marks:-" << m4 << ft\n\nn; } l;

cl-ass resul-t : public marks, public extra
{ privale:

float total-;
€ l nal- nardahf ada !r -- --nE age;

public:
void display (void) i L

void result : : display (void)
{ total=m1+m2+m3+m4;

percentage : toLaI/4i
putno () ;
putmarks () ;
putextra () ;
cout << ItTotaL Marks:='r ((total << "\nni
cout << rrPercentag€:-tr << percentage << tt\ntt;

)

int main ()

{

<< m1 <<tt \ntt;
<< m2 <<tt\ntt;
<< m3 <<tt\ntt;

Or
0td0i OOPwith C++ lnheritance

resu.l-t studentli // object
studentL.getno (301 ;
studentL.getmarks (40.5, 60. 0,
studentl . getextra (50. 5) ;
studentl.display() ;
return 0;

studentl- is created

80.0);

mg
Output

Roll Number
Marks in ml
Marks in m2
Marks in m3
Extra Marks
Total Marks
Percentage

:= 30
:= 40.5
:= 60.0
:= 80.0
:= 50.5
:= 231
:= 57.75

7. Container Classes
C++ allows to declare an object of a class as a member of another class. When an object of a class

is declared as a member of another class, it is called as a container class. Examples of container
classes are anays, linked lists, stacks and queues.

The general syntax for the declaration ofcontainer class is,
cLas s. user_def ined_name 1 {

I'
c.l-ass. user_def ined_name2 {

c l ace rrcar rlaf i naA nrman I

:::
cLass der.ived*class
I

user_defined_name1 objl; // ob)ect of the cfass one
,,ear Aa€i naA n=ma? al-ri?. / / oh'iter-t nf thc cLass two, t / vvleee v!

user defipgd p:man nlrin: // orriec:t of l-ha class ntt

m: Program to demonstrale how a contalner class ls declared and deflned
#includeciostream>
#include<iomani-p>

OOP with C++ lnheritance
Or

ut$0i

using namespace std;
-1 ^^^ L^^.1 ^ ,l -fnutdD> uaDru_!rl!v
J nri rrrl-a.L FT-

char name t30l ;
Iong int rollno;
char sex;

publ-ic:
void getdata O ;
void display O ;

j; / / end of class definition
class academic-fit
{ private:

char course [30] ;
char semester [10] ;
int rank;

public:
rrai A aaf riai: Ivv4s Yvugse!4 \

void display (

I; / / end of class definition
class financial-assit
{ private:

float amount;
basic_info bdata;
academi-c-fit acd;

/ /ahlant- nf nlrq- L--i^ l-€^
/ / wp)9wt v! vrqrS UdDIU-!rr!V

/ /ob)ect of cl-ass academic-f it
nrrhlin.ysvarv.

void getdata O ;
void displaY O ;

); / / end of class definition
rrnid h:eic info catdefa{)

Yeuesvs \ /

{ cout << "Enter name: \ntt;
cin >> name;
cout << "Enter roLl no:\n";
cin
cout << "Enter sex:\nrr;
cin >> sex;

)
void basic-info :: disPlaYo
{ cout << name

cout << rollno << rr " i
cout << sex

1

void academic-fit : : getdata o
{ cout << "Course Name (MBA' MCMTMCS, MCA etc)\n";

cin >> course;
cout << rrsemester (First/Second etc)\ntt;
cin >> semester;
cout << rrRank of the student \n'f i
cin >> rank;

)
rrnid :nrdamin fi.l- " disnl:w()vvlq ququ s-eF35J U

{ cout << course
couL << semester
cout << rank

)

o,
uto!l OOP with C++ lnheritance

void financial-assit :: getdatao
{ bdata. getdata () ;

acd.getdata () ;
cout << ItAmount in rupees\nt'1
cin >> amount;

I

void finanacial-assit :: displayo
{ bdata. display () ;

acd.displayO;
cout << setprecision(2) ;
cout << amount << rr " i

)
rrni d nr i n / I

{ financial_assit f;
cout << nEnter the following information for financial- assisLancet'1
f. getdata O ;
cout << endl;
cout << ttAcademic Performance for Financial- Assistance\ntt;
cout << rl

cout << rrName

cout << ?l

RoIlno Sex Course Semester Rank Amount\nn;

f .displ-ayO;
cout << endl;
cout << tt

ml:

\ntt i

8. Virtual Base Classes
We know that multiple inheritance is a process of creating a new class

which is derived from more than one base classes. Multiple inheritance
hierarchies can be complex, which may lead to a situation in which a

derived class inherits multiple times from the same indirect base class. In
figure 8.6,'abc' has two direct base classes 'derivedB' and 'derivedC' which themselves have a
common base class 'baseA'. The 'abc' inherits the properties of 'baseA' via two separale paths. It can
also inherit directly as shown by the broken line. The class 'baseA' is refened as indirect base class.

Flgure 8.6

ffi OOP with C++ lnheritance
Q.

ft3tci

From the above sinration we can write a program segment as follows:
class baseA {

nrnl- anf arl .

int x;
. \i

class derivedB : Publi-c baseA {
hr^+ 6^l. aal .

/ /pathl, through derivedB

. l;
class derivedc : public baseAi / /patnz, through derivedc

protected:
. t;

class abc : public derivedB, public derivedC
{ / / t,he data member x comes twice

.];
In the above segment, the data member x is inherited twice in the derived class abc, once through

the derived class derivedB and again through derivedC. This is wasteful and confusing. To avoid

such multiple repetition of the data member we have to convert the derived class derivedB and

derivedC into virtual base classes. Any base class which is declared using the keyword virtual is

called as virhral base class. Virtual base class is a useful method to avoid unnecessary repetition of
the same data member in the multiple inheritance hierarchies.

The following program segment shows how a base class is derived only once from the derived

classes via virtual base classes.
cl-ass basbA t

protecLed:
int x;

. I;
class derivedB : public virtual baseA {

protected:
t /^-+r1 +1^-^,.-1, defiVedBI I PqutLL t Lrrl vuYlr

. Ii
class derivedc : virtuaL public baseA{ / /pathz, through derivedc

protected:
. I;

cl-ass abc : public derlvedB, public derivedC
{ / / tne dala member x comes on}y once

. t,

Note: The keywords vit'tual andpublic may be used in any order,

When we make derivedB and derivedC as virtual base classes for abc then only one copy of the

data member x is available.
Consider again the student results processing system. Assume that the class extra derives the

rollno from the class student. Then the inheritance relationship will be as shown infigure 8.7.

Flgure 8.7: Vlrtual base class

Onutol OOP with C++ lnheritance

ti:],
-- Program to lmplement the conoopt of vlrtual base class
#includeciostream>
using namespace std;
class student{

protected:
inf ral lna.

vLL.Lv,

public:
void getno (int) ;
vold putno(void) , I;

void student :: getno(int a)
{ rollno = ai }
void student : : puLno o
{ cout << "Roll Number i " << rollno << "\n"i }
class marks : virLual public student
I nrnl- aal- arl .
I Frvevvvvs.

float ml., m2rm3;
public:

void getmarks(fl.oat, float' fLoat) ;
void putmarks (void) ; \;

void marks : : getmarks (float x. float y, fl-oat z)
{ m1=x;

m2=y,
m3 : zil

void marks : : putmarks o
{ cout << "Malks in m1.= " << m1 <<"\n";

cout << "Marks in m2 i: " << m2 <<"\n";
cout << "Marks in m3 i= t' 11 m3 <<"1n" t I

class extra : public virtual student
J nrnl- anl- ad .
(rr vvvvevv.

float m4;
nrrl.r'l i n.

void getextra(float s)
t m4 = s;)
void putextra (void)
{ cout << "Extra Marks a=" << m4 << "\n\n"; } I

class result : public marks, public extra
I nrirT^l-6.t r- 3

float totaL,.
float percentage;

public:
void display(void) l;

void result :: display(void)
{ total:mL+m2+m3+m4;

percentage = total,/4i
putno () ;
putmarks () ;
putextra () ;
cout << "Total Marks i:" 11 total << "\n";
cout << "Percentag€i=rt << percentage << "\n"i)

int main ()
{ result studentl i / / object studentl is created

studentl.getno (30) ;

OOP with C++ lnheritance
Or

ut$0i

studentL.getmarks (40.5, 60.0, 80.0) ;
studentl . getextra (50. 5) ;
studentl.displayO;
ratrrrn f).

Output

Roll Number := 30
Marks in ml := 40.5
Marks in m2 := 60.0
Marks in m3:= 80.0
Extra Marks := 50.5
Total Marks := 231
Percentage := 57.75

In the following exlmple, derivedt a and derivedlb
derived2 contains just one i field.

each contain a base object, but

IL-JI

-
inc lude<ios tream>
usi-ng namespace std;
^l -^^ L^^^ |UIqDD ldDE 1

public:
int i. 1..LLtv !, t,

cLass derivedla: virtual public base {
public:

int j;];
class derivedlb: virtual public base {

public:
int k; \;

cfass derived2: public derivedla, public derivedlb{
pub11c:

int product() {return i*j*k;}
I.
i nf mri n i/ \3rru .lr94rr \,

f rlari rraA? nl.r..i .(vv!Lwv9.vpJ'

vvJ.r - lwl
al.ri i

-
2.vp).J - J,

obj.k = 5;
cout << t'product ist'<< obj.product()
raf rrrn O.
5vvq!1r vt

]

The class which is not used to create objects, but is designed only to act as a base class, so as to
be inherited by other classes, is called an absbact class. It is a design concept in program
development and provides a base upon which other classes may be built. In the previous examples,
class student and base are abshact classes.

O"
uSni OOP with C++ lnheritance

9. Constructors in Derived Classes
We know that the constructor function is used to initialize the objects. Whenever an object of a

class is created, a constructor member function is invoked automatically. As long as'no base class

constructor takes any arguments, the derived class need not have a constructor function. If any base

class contains a consfiuctor with one or more arguments then it is compulsory for the derived class to
have a constructor and pass the arguments to the base class constructors.

While applying inheritance we usually create objects using the derived class. Thus, it makes sense

for the derived class to pass arguments to the base class constructor. When both the derived and base

classes contain constructors, the base constructor is executed first and then the constructor in the
derived class is executed.

In case of multiple inheritance, the base classes are constructed in the order in which they appear

in the declaration of the derived class. Similarly, in multilevel inheritance, the constructors will be

executed in the order of inheritance.

Since the derived class takes the responsibility of supplying initial values to its base classes, we
supply the initial values that are required by all the classes together, when a derived class object is
declared. For passing the values to the base class constructors C++ supports a special argument
passing mechanism for such situations.

The derived class constructor receives the entire list of values as its arguments and passes them
on to the base class constructors in the order in which they are declared in the derived class. The base

class constructors are called and executed before executing the statements in the body of the derived
constructor.

Thc generalform of defining a derived constnrctor is

Derived-constructor(arglistl. arglist2. ,,arglistN, arglj-stD) :

llrlttr*t
baseL(arglistl.),base1(arglistz),.,.baseN(arqlistN)lBody of derived constructorl

where, Derived-Constructor function contain two parts sepamted by a colon. The first part
contains the declaration of the arguments that are passed to the derived-constructor and the second
part lists the function calls to the base constructors.

basel(arglistl), base2(arglist2)r........baseN(arglistN) are function calls to the base constructors
basel0, base2Q, . . . baseN0 and therefore arglistl, arglist2, ... arglistN represent the actual
parameters that are passed to the base constructors. arglist 1 to arglistN are the argument declarations
for base constructors basel to baseN. arglistD provides the parameters that are necessary to initialize
the members of the derived class.

Example
alpha(int a, int
beta (a, b) , / /
nana I n rl\ / /vt

i
) a.lpha = d1;

}a inl- a flaal- rl inl- rl1\.ut frrL e, !rvsL u, rrru u+/.

call to the constructor beta
call to the constructor sama

/ / execuEes its own body

ffi Or
utd0l

beta(a, b) invokes the betaQ base constructor while gama(c, d) invokes gama0 base constructor.
The constructor alpha0 supplies the values for these four arguments. In addition, it has one
arguments of its own. The constructor alpha0 has a total of five arguments. AlphaQ may be invoked
as follows:

alpha obj(4, 7, 8, 9, 23.5);

These values are assigned to various parameters by the constructor alphaQ as follows:

478923.5
lrrrlY++++
abcddl

The constructors for virtual base classes are invoked before any non-virtual base classes. If there
are multiple virtual base classes, they are invoked in the order in which they are declared. Any non-
virtual bases are then constructed before the derived class construction is executed. Program for
illustrating how constructors are implemented when the classes are inherited.

OOP with C++ lnheritance

includecios tream>
using namespace std;
class baseA
i int x;

public:
baseA(int i)
{ x = i;

cout << "baseA
]
void showx(void)
{ cout << "x =

t;
cl-ass derivedD
{ float y;

public:
dorirrorlF)/f Ia:l- iI

vev\--v5v)l

{ y =j;
cout <<"derivedD initialized \n";

1

r

void showy(void)
{ cout << "Y : " << Y << "\n"; }

class derivedE : public derivedD, public baseA
{ int m, n;

public:
derivedE(int a, ffoat b, int c, int d): baseA(a), derivedD(b)
{ m=c;

- - x.rr - q,

cout << "derivedE initialized \nf';
)
void showmn(void)
{ cout <<"m = " << m <<"\n";

initialized \n"I

t' << x << "\n";)

Or
uSnr OOP with C++ Inheritance

cout <<"n = tt 11 n <<"\n";
)

\;
int main ()
{ derivedE e(5, 10.89, 40' 50);

cout << "\n"i
e. showx O ;
e. showy O ;
e. showmn O i
ral-rrrn O r

i

0utput
baseA initialized

derivedD initialized

derivedE initialized

x=5
Y = 10.89

m= 40

n=50
In the above program, derivedD is initialized first although it appears second in the derived

constructor since it is declared first in the derived class header line. baseA(A) and derivedD(b) are

the function calls. Therefore, the parameters should not include types.

| 0. Destructors in Derived Classes
It has been seen that destructor is a special member function. It is invoked automatically to free

the memory space which is allocated by the constructor functions. Whenever an object of the class is

getting desftoyed, the destructors are used to free the heap area so that the free memory space may

be used subsequently. In the previous section, it has been seen that constructors in hierarchy fire
from a base class to a derived class. Destructors in hierarchy fire from a derived class to a base class

order, i.e., they fire in the reverse order of that of the constructors.

A program to illustrate how the destructor member function gets fired from the derived class

objects to the base class objects through pointers.

ILJI ,

-# include< ios tream>
using namespace std;
a l a q c ha eoA {

public:
-baseA{): //rlatl'r1lr-tol.vqserr \ / t

't.
)l

class derivedB : public baseA {

OOP with C++ lnheritance
Or

urft0i

public:
-derivedB () ; // destructor

I;
baseA :: -baseAo
{ cout << "base class destructor \n,ri
)
derivedB :: -derivedBo
{ cout << "derivedB class destructor \n,,;
)
void main ()

{ derivedB objb;
lrtr
-Output

derivedb class destructor
base class desffuctor

A program to display the message of both constructors and destructors of a base class and a
derived class.

m*
#incLude<iostream>
using namespace std;
class baseAi

nrrl.r] i n.

baseAO { //baseA's constructor
cout << "base class constructor\n,'; i

-baseAO; { // baseA's destructor
cout (< "base class destructor\n,,;]

class derivedD
hirh l i ^ .yqvllu.

derivedD ()

couL <<
-derivedD

cout <<
l.t,
void main ()

{ derivedD obj,
]

: public baseA {

I // r{arirraAl-trc-*- .j consE.ructor
"derived class constructor\n";]
O; { // derivedD's destructor
"derived class destructor\n.'i)-

Output
base class constructor

derived class constructor

derived class destructor

base class destructor

Q.
u||0rl OOP with C++ lnheritance

I l. Nesting of Classes
Classes can be defined inside other classes. Classes that are defined inside other classes are called

nested classes. Nested classes are used in situations where the nested class has a close conceptual
relationship to its surrounding class. For example: With the class string a type string::iterator is
available which will provide all characters that are stored in the string. Ttis string::iterator type
could be defined as an object iterator, defined as nested class in the class string.

A class can be nested in every part of the surrounding class: in the public, protected or private
section. Such a nested class can be considered a member of the surrounding class. The normal access

and rules in classes apply to nested classes. If a class is nested in the public section of a class, it is
visible outside the surrounding class. If it is nest,ed inthe protected section it is visible in subclasses,
derived from the surrounding class, if it is nested in the private section, it is only visible for the
members of the surrounding class. The sunounding class has no special privileges with respect to the
nested class. So, the nested class still has full control over the accessibility of its members by the
surrounding class. For example: C'onsider the following class definition:
class Surround
{ public:

cl-ass FirstWithin
{ int d_variabl-e;

hrrhl.i^.

FirstWithin () ;
int var O const
{ return d_variable;
l

hrlltiia.

ttu"" SecondWithin
{ int d_variable;

public:
SecondWithin () ;
int var O const
i return d*variable;

t;
In this definition access to the members is defined as follows:
The class FirstWithin is visible both outside and inside Surround. The class FirstWithin therefore

has global scope.
The constructor FirstWithin} and the member function var0 of the class FirstWithin are also

globally visible.
The int d-variable datamember is only visible to the members of the class FirstWirftin. Neither

the members of Surround nor the members of SecondWithin can access d-variable of the class
FirstWithin directly.

The class SecondWithin is only visible inside Surround. The public members of the class
SecondWithin can also be used by the members of the class FlrsrWithin, as nested classes can be
considered members of their surrounding class.

ffi OOP with C++
O.

ul$0ilnheritance

The constructor SecondWithin} and the member function var0 of the class SecondWithin can
also only be reached by the members of Sunound (and by the members of its nested classes).

The int d-variable datamember of the class SecondWithin is only visible to the members of the
class SecondWithin. Neither the members of Sunound nor the members of FirstWithin can access
d-variable of the class SecondWithin dnectly,

As always, an object of the class type is required before its members can be called. This also
holds true for nested classes.

If the surrounding class should have access rigbts to the private members of its nested classes or
if nested classes should have access rights to the private members of the surrounding class, the
classes can be defined as friend classes.

The nested classes can be considered members of the surrounding class, but the members of
nested classes are not members of the surrounding class. So, a member of the class Surround may
not access FirstWithin::var0 directly. This is understandable considering the fact that a Surround
object is not also a FirstWithin or SecondWithin object. In fact, nested classes are just typenames. It
is not implied that objects of such classes automatically exist in the surrounding class. If a member
of the surrounding class should use a (non-static) member of a nested class then the surrounding
class must define a nested class object, which can thereupon be used by the members of the
surrounding class to use members of the nested class.

For example: In the following class definition there is a surrounding class Outer and a nested
class Inner. The class Outer contains a member function caller0 which uses the inner object that is
composed in Outer to call the infunction0 member function of Inner:
class Outer
{ public:

void caller ()
I d innalinfrrnnl- inn/\.
Ig-4.r].vlvI1\/,

)
private:
class Inner
{ public:

void infunction O ;

Inner d-inner i / / class Inner must be known

The mentioned function Inner::infunction0 can be called as part of the inline definition of
Outer::caller0, even though the definition of the class Inner is yet to be seen by the compiler. On the
other hand, the compiler must have seen the definition of the class Inner before a data member of
that class can be defined.

I l. I Defining Nested Class Members

Member functions of nested classes may be defined as inline functions. Inline member functions
can be defined as if they were functions defined outside of the class definition: if the function
Outer::callerQ would have been defined outside of the class Outer, the full class definition (including
the definition of the class Inner) would have been available to the compiler. In that situation the
function is perfectly compilable. Inline functions can be compiled accordingly: they can be defined
and they can use any nested class, even ifit appears later in the class interface.

Q.
$t|dl lnheritance

Member functions of nested classes can also be defined outside of their surrounding class.
Consider the constructor of the class FirstWithin in the example of the previous section. The
constructor FirstWithinQ is defined in the class FirstWithin, which is, in turn, defined within the
class Surround. Consequently, the class scopes of the two classes must be used to define the
constructor. e.g.

'Surround: :FirstWithin: :FirstWithin ()
{ variabl-e = 0;
]

Static (data) members can be defined accordingly. If the class FirstWithin would have a static
unsigned datamember epoch, it could be initialized as follows:

unsigned Surround: :FirstWithin: :epoch = 1910;
Furthermore, multiple scope resolution operators are needed to refer to public static members in

code outside ofthe surrounding class:
void showEpoch ()
{ cout << Surround::FirstWithin::epoch = 1-9'70;

)

Inside the members of the class Surround only the FirstWithin:: scope must be used; inside the
members of the class FirstWithin there is no need to refer explicitly to the scope.

What about the members of the class SecondWithin? The classes FirstWithin and SecondWithin
are both nested within Surround, and can be considered members of the surrounding class. Since
members of a class may directly refer to each other, members of the class SecondWithin can refer to
(public) members of the class FdrsrWithin. Consequently, members of the class SecondWithin could
refer to the epoch member of FirstWithin as

FlrstWithin: : epoch

| 1.2 Declaring Nested Classes

Nested classes may be declared before they are actually defined in a surrounding class. Such
forward declarations are required if a class contains multiple nested classes, and the nested classes
contain pointers, references, parame0ers or return values to objects of the other nested classes.
For example: The following class Outer contains two nested classes Innerl and Inner2. The class
Innerl contains a pointer to kmer2 objects, and Inner2 contains a pointer to Innerl objects. Such cross
references require fonvard declarations. These forward declarations must be specified in the same
access-category as their actual definitions. In the following example the Inner2 forward declaration
must be given in a private section, as its definition is also part of the class Outer's private interface:
class Outer
{ private:

class fnner2;
class lnnerl

OOP with C++

Inner2 *pi2;

cl-ass Inner2
Tnnarl *ni 1 .

- FlI'

// forward decl-aratlon

/ / points to fnner2 objects

/ / aai n+ 6 +n Tnnarl nhiaal- c/ / yvrlruD uv rlltls! a v!J9uuD

OOPwith C++ lnheritance
O.

rflJ0i

| 1.3 Accessing Private Members in Nested Classes

To allow nested classes to access the private members of their surrounding class; to access the

private members of other nested classes; or to allow the surrounding class to access the private

members of its nested classes, the friend keyword must be used.

Consider the following situation, in which a class Surround has two nested classes FirstWithin
and SecondWithin, while each class has a static data member int s-variable:

class Surround
| ^u -!I^ l-+ ^ *'^-.i -1.l^.1. 5LdLf U JtIL D-Vq! LAPLet

public:
class FirstWithin
{ static int s-variabl-e;

publi-c:
int value O ;

int value O;
private:
class SecondWithin

I ci=f ic ir- - ----l^Ll^-
--lL D-VA! LqpLe,

nrrhl i a.

int value O ;
l.

j,

If the class Surround should be able to access FirstWithin and SecondWithin's private members,

these latter two classes must declare Surround to be their friend.

The function Surround::value0 can thereupon access the private members of its nested classes.

For example: No0e the friend declarations in the two nested classes:

class Surround
I cirf ia inl- c --^-l-Lt^.

---- J_vq! rdurg,
public:
class FirstWithi-n
{ friend class Surround;

static int s-variable;
nrrl.r'l i n .

int value O ;

value ()
FirstWithin : : s-variabl-e
return (s-variable);

nr i rrr t a .

class SecondWithin
friend class Surround;
ctal-in ini q rl:r:^Ll^'

--
I dUfE t

nrrl.r'l i a.
Puv44v.

int value O ;

= SecondWithin : : s-varlab1e;

!. f

tl
1nt
{

O"
ut$0rl OOP with C++ lnheritance

Now, to allow the nested classes access to the private members of thefu surounding class, the
class Surround must declare its nested classes as friends. The friend keyword may only be used when
the class that is to become a friend is already known as a class by the compiler, so either a forward
declaration of the nested classes is required, which is followed by the friend declaration, or the friend
declaration follows the definition of the nested classes. The forward declaration followed bv the
friend declaration looks like this:
cl-ass Surround
{ class FirstWithin;

class SecondWithin;
friend cl-ass FirstWithin;
friend cl-ass SecondWithln;
nrrlr] i n.
.1u"" FirstWithin;

Alternatively, the friend declaration may follow the definition of the classes. Note that a class can
be declared a friend following its definition, while the inline code in the definition already uses the
fact that it will be declared a friend of the outer class. Also note that the inline code of the nested
class uses members of the surrounding class not yet seen by the compiler. Finally note that
's-variable' which is defined in the class Sunound is accessed in the nested classes as
Surround : : s_variable:
class Surround
{ sfafin int q rr:riahla:g! +9v49,

public:
c.Lass FirstWithin
{ friend class Surround;

Statlc int s \zerinLr'l a:
nrr'l.r'] i a.vsv+!v.
1int va.Lue ()

{ Surround::s_variable = 4;.
Surround: : classMember () ;
return .s var i al'rl e :

)

friend class Fi rsfWi th i n.
int value ()
{ FirstWithin: : s_variable : SecondWit.hin: : s_variable;

return s vari alr'l o:
)
private:
class SecondWithin
{ friend class Surround;

stat.ic int s_variable;
public:
int value ()
{ Surround: :s_variabl_e = 40;

return s_variabl_e;
)

static void classMember () ;
friend cl-ass SecondWithin;

OOPwith C++ lnheritance
O"

ut$0tl

Finally, we want to allow the nested classes access to each other's private members. Again this
requires some friend declarations. In order to allow FirstWithin to access SecondWithln's private
members nothing but a friend declaration in SecondWithin is required. However, to allow
SecondWithin to access the private members of FirstWithlz the friend class SecondWithin declaration
cannot plainly be given in the class FirstWithin, as the definition of SecondWithiz is as yet unknown.
A forward declaration of SecondWithin is required, and this forward declaration must be provided by
the class Surround, rather than by the class FirstWithin.

Clearly, the forward declaration class SecondWithin in the class FirstWithin itself makes no
sense, as this would refer to an external (global) class SecondWithin. Likewise, it is impossible to
provide the forward declaration of the nested class SecondWithin inside FirstWithin as class
Surround::^SecondWithin, with the compiler issuing a message like 'Surround' does not have a nesled
type named'SecondWithin'.

The proper procedure here is to declare the class SecondWithin in the class Surround, before the

class FirstWithiz is defined. Using this procedure, the friend declaration of SecondWithin is
accepted inside the definition of FirstWithin. The following class definition allows full access of the
private members of all classes by all other classes:

class Surround
{ c}ass SecondWithin;

el-ai-ic ini q 'r-irl-.1a.--.- -_vq! rqurg,
public:
class FirstWithin
{ friend class Surround;

friend class SecondWithln;
static int s_variable;
nrrl.r] i a.
}/qv4rv.
l-! --^1.-^ /\f rrL vcrf ue (,,
I Qrrrrarrnri ..< rr:ri:hr'la:t u s!

return s_variable;
I
)

J,
friend class FirstWithin;
i nf rr:'l rro / .|

SecondWithin : : s-variabLe ;

{ FirstWithin: :s_variable = SecondWlthin: :s-variable;
return s-varj-ablei

)
private:
class SecondWi-thin
{ friend cl-ass Surroundi

friend cLass FirstWithin;
static int s_variable;
public:
I -+ .,^ L,^ / \IIIL Vqf UE \,'

{ Surround: : s-variable : FirstWithin: : s-variablei
return s_variable;

]

friend class SecondWithin;
l.

O"
tfr$0tl OOP with C++ lnheritance

12, Pointers to Derived Classes
C++ allows a pointer in a base class to point to either a base class object or to any derived class

object. The following program segment illustrates how a pointer is assigned to point to the object of
the derived class.
^1^^^ L^^^1UIODD Pd>Ed

{

::.r,
class derlved : publlc baseA

I
1

I..)a

void main ()
I l'rrcaA *nfr.
r vsvv.r YeL I

rlor i rrad nl.rirl .
vs vvju,

h+F
-c^L4i.Pul -qvvjut

II

The pointerp/r points to an object of the derived class objd.
But there is a problem in using ptr to access the public members of the derived class derived.

Using ptr, we can access only those members which are inherited from baseA and not the members
that originally belong to derived. In case a member of derived has the same name as one of the
members of baseA, then any reference to that members by ptr will always access the base class
member.

In contrast, a pointer to a derived class object may not point to a base class object with explicitly
casting. For exarnple: The following assignment statements are invalid:
void main ()

i baseA obj
rlar i rrarl *hf r .

y vL fptr : &obj; //Lnvalid
)

Note that a derived class pointer cannot point
corrected by using the explicit casting.

to base class object. But, the above code can be

void maln ()

{ square sqobj;
rectangle *ptri //pointer of the derived cLass
ptr : (rectangle*) esqobj; //explicit casting
ptr->dispfay () ;

.)
A program to illustrate how to assign the pointer of the derived class to the object of a base class

using explicit casting.

#1nc1ude<iostream>
using namespace std;
c.l-ass baseA

//pointer to baseA

/ / indirect reference objd to the pointer

ffi OOP with C++ lnheritance
O"

ut$0i

i public:
i n't- l.r.
Lll9 p,

void show ()
{ cout << ttb =rr ((b <<tt\ntt; }

class derivedD : public baseA
{ public:

i nt- A.
void show()

{ COUI << ttb = rf ((b <<tr\ntt << trd=tr << d <<tt\ntti }

int main ()

{ baseA *bptr; / / base pointer
baseA base;
bptr : &base; // base address
bptr->b : 100 i / / access baseA via base poinLer
cout << Itbptr points to base object \nfr;
bptr->show () ;
/ / derived class
derivedD derivedi
bptr:cderived; / / address of derived object
bptr->b = 200i / / access derivedD via base pointer
cout << I'bptr now points to derived object \ntt;
bptr->show0; // bptr now points to derived object
/ / ^^^^^^:^- -I t aeusDorrrv .i using a pointer of type derived class derivedD
derlvedD *dptr, / / derived type pointer
dptr = &derived;
dptr->d = 900;
cout << "dptr is derived type pointer \n'r;
dptr->show () ;
cout << "using ((derivedD *) bptr) \n";
((derivedD *) bptr) ->d=400;
((derivedD *)bptr) ->show() ;
return 0i

I mtc5
Output

bptr points base object
b=100
bptr now points to derived object
b=200
dptr is derived type pointer
b=200
d=300
using ((derivedD *) bptr)
b=200
d=400
The statement bptr-> show0; is used two times. First, when bptr

second when bptr is made to point to the derived object. But
baseA::showQ function and displayed the content of the base object.
>show0;

points to the base object and
both the times. it executed
However the statements dptr-

O.
utEt0i OOP with C++ lnheritance

((derivedD *) bptr)->showO; //cast bptr to derivedD type
display the contents of the derived object. This shows that although a base pointer can be made to

point to any number of derived objects, it cannot directly access the members defined by a derived
class.

| 3. Virtual Functions
A virtual function is one that does not really exist but it appears real in some parts of a program.

Virtual function is an advanced feature of the Object-Oriented Programming. A virtual function is a
function that is declared within a base class and redefined by a derived class. When we use the same
function name in both the base and derived classes, the function in the base class is declared as

vinual using the keyword virtual preceding its normal declaration. Virtual functions implement the
"one interface, multiple methods" philosophy that underlies polymorphism. The virtual function
within the base class defines the form of the interface to that function. Each redefinition of the virtual
function by a derived class implements its operation as it relates specifically to the derived class.
Hence, the redefinition creates a specific method. When a function is made virtual, C++ determines
which function to use at run time based on the type of object pointed to by the base pointer, rather
than the type of the pointer. Thus, by making the base pointer to point to different objects, we can
execute different versions of the virtual function. And this determination is made at run time. The
general syntax of the virtual function declaration is:

ass user_defin
nr 1 \ta t a .

public:
virtual return-type
virtual- return_type

:tit":t
return_type

f unction-name1 (argument)

f unction-name2 (argument)

function-name3 (argument)

To make a member function virtual, the keyword virtual is used in the methods while it is
declared in the class definition but not in the member function definition. The keyword virtual
should be followed by a return type of the function name. The compiler gets information from the
keyword virtual that it is a virtual function and not a conventional function declaration.

#include<iostream>
using namespace std;
cl-ass Base
t

public:
void display ()

{ cout ((" \n DisPlaY Base
)

virtual void showo

ffi OOP with C++ lnheritance
o,

ut$otl

{ cout <<. " \n Show Base " I
i

T;
class Derived : public Base
{ public:

vold dlsplay ()

cou! <(tt \n Display Derived ";
)

rrniA chnr.r/Iv v+v e.rvv! \ /

{ cout << r' \n Show Derived ";
)

t,
i nf m: i n / I
{ Base Bi

Derived D;
Rr ca *i.rnl_ r .

vY vL I

cout << t' bptr points to Base \n ";
bptr = &B;
bptr -> displayO; // ca]-]-s Base version
bptr -> showo; // ca:-.ls Base version
cout << " \n\n bptr points to Derived\n ";
bptr = &D;
bptr -> dispLayO; // cal-l-s Base version
bptr -> show0; // ca]-l-s Base versj-on
return 0;

)

0utput
bptr points to Base

Display Base

Show Base

bptr points to Derived
Display Base

Show Derived
Note: When bptr is made to point to the object D, the statement bptr -> display); calls

function associated with the Base (i.e., Base :: Display)), whereas the statement
show); calls the Derived version of show). This is because the function display)
been made virtual in the Base class.

The most important point to note that, we must access virtual functions through the use of a
pointer declared as a pointer to the base class. We can use the object name with the dot operator the
same way as any other member function to call the virtual functions but run time polymorphism is
achieved only when a virtual function is accessed through a pointer to the base class.

When virtual functions are created for implementing late binding, we should observe some basic
rules that satisfy the compiler requirements:
1. Only a member function of a class can be declared as virtual. It is an error to declare a non

member function of a class as virtual.

only the
bptr ->
has not

O.
0r$0i

2.

OOP with C++ lnheritance

The keyword virtual should not be repeated in the definition if the definition occurs outside

the class declaration. The use of a function specifier virtual in the function definition is

invalid.
A virtual function cannot be static member because a virtual mernber is always a member of a
particular object in a class rather than a member of the class as a whole.
They are accessed by using object pointers.

A virtual function can be a friend of another class.

A virtual function in a base class must be defined, even though it may not be used.

The prototypes of the base class version of a virtual function and all the derived class versions

must be identical. If two functions with the sarne rurme have different prototypes, C++

considers them as overloaded functions, and the virtual function mechanism is ignored.

We have only virtual destructors and cannot have virtual constructors.

A destructor member function does not take any argument and no return type can be specified

for it not even void.
While a base pointer can point to any type of the derived object, the reverse is not true. That is

to say, we cannot use a pointer to a derived class to access an object of the base type.

When a base pointer points to derived class, incrementing or decrementing it will not make it
to point to the next object of the derived class. It is incremented or decremented only relative

to its base type. Therefore, we should not use this method to move the pointer to the next

J.

4.
).
6.
7.

8.

9.

10.

11.

object.
12. If a virtual function is defined in the base class, it need not be necessarily redefined in the

derived class. In such cases, calls will invoke the base function.

| 4. Pure Virtual Functions
The functions which are only declared but not defined in the base class

are called pure virtual functions. A function is made pure virtual by

preceding its declaration with the keyword virtual and by postfixing it
with = 0.

The general form of pure virtual function declaration is

virtual return-type function-name(argument list) = 0;

When a virtual function is made pure, any derived class must provide its own definition. If the

derived class fails to override the pure virtual function, a compile time error will result.

Consider the following example of a pure virtual function where the definition of a class

sortable requires that all subsequent classes have a function compare () :

cl-ass Sortabfe
{ public:

virtual int compare(Sortable const &ocher) const = 0;

The function compare O must return an int and receives a reference to a second Sortable
object. Possibly its action would be to compare the current object with the other one. The function

is not allowed to alter the other object, as other is declared const. Furthermote, the function is

,d]
not allowed to alter the current object, as the function itself is declared consr . A class containing
one or more pure virtual functions cannot be used to define an object. The class is therefore only
useful as a base class to be inherited into a useable derived class. It is called an absfiact class. A
program for illustrating how a pure virtual function is defined, declared and invoked from the object
of a derived class through the pointer of the base class.
ft=nHF6;iAi;
include<iostream>
using namespace std;
class base
{ public:

virtual void getdataO = 0;
virtual void displayO = 0, j;

class derivedB : public base{
private:

long int code;
nh:r n:ma |)n1 .v..Er ..s.rrv L-vJ t

public:
void getdataO;
void displayO i Ii

void base :: getdataQ { }
void base :: displayO { }
void derivedB : : getdata o
{ cout << "Enter code of the employ€e:=,';

ci-n >> code;
cout << "Enter name of the employ€e::,I
cin >> namei]

void derivedB : : display o
{ cout

cout << "Employee code Employee name\n,,i
cout << tt--------

---------il.
cout<< code (("\t,,<< name << endl;]

rrnirl main/\

I lraca *nl.r.
(vgvvyvLf

rlorirraAP. nl.ri.v4e vu),

ptr = &obj;
ptr->getdata () ;
ptr->display () ;

It

0utput
Enter code of the employee:= 001
Enter name of the employee:= sagar

Employee code Employee name

001 sagar

Q"
u$0t OOP with C++ lnheritance

| 5. Abstract Classes
Abstract classes act as expressions of general concepts from which more specific classes can be

derived. You canndt create an object of an abstract class type; however, you can use pointers and
references to abstract class types. A class that contains at least one pure virtual function is considered
an abstract class. Classes derived from the abstract class must implement the pure virtual function or
they, too, are abstract classes. The main objective of an abstract base class is to provide some traits
to the derived classes and to create a base pointer required for achieving run time polymorphism.
Program to illustrate how to define an abstract base class with pure virtual functions in which the
function definition part has been defined without any statement. The members of the derived class
objects are accessed through the base class objects through pointer technique.

Program for Abstract Classes
#include<iostream>
using namespace std;
class base{
n"h1 i ^.

virtual void getdata O : O,
virtual void displayO = 0, \;

cl-ass derivedB : public base{private:
long int code;
char name t20) i

public:
rrrrirl aafrlrfa/'--*-*.) ;
void displayO;);

class derivedC : public base{
nri rrrf a.

f In:,|- hainht-.

float weight;
public:

void getdata O ;
void displayO; l;

void base : : getdata o
{}
void base :: displayo
i)
void derivedB : : getdata o
{ cout << "Enter code of the employee:=";

cin >> code;
cout << "Enter name of the employee,:";
cin >> name;]

void derivedB : : display o
{ cout << "Employee code Employee name\n";

cout << code << "\t"<< name << endl;)
void derivedC : : getdata o
{ cout << "Enter height of the employee:="I

cin >> height;
cout << "Enter weight of the employee:="I
cin >> weight;)

void derivedC :: displayo

/ /onre rri rf rre l functionttYv-

/ /pure virtual function

OOP with C++ lnheritance
O"

0t$0rl

{ cout << "Height and weight of Employee:: \n";
cout << height (("\t"<< weight << endl;)

void mainO { base *ptr[3];
derivedB objb;
derlvedC objc;
Ptr[0] = &objb;
ptr[1] : &objc;
ptr[0]->getdata(
ptr[1]->getdata(
ptr[0]->display(
ptr[1]->displayo

tfiia!5

Output
Enter code of the employee:= 001

Enter name of the employee:= sagar

Enter height of the employee:=l35.0
Enter weight of the employee:=7O
Employee code Employee name

001 sagar

Height and weight of Employee:=
135.0 70

Restrictions for using Abstract Classes

Abstract classes cannot be used for:

o Variables or member data
o Argument types
o Function return types
o Types ofexplicitconversions

Another restriction is that if the constructor for an abstract class calls a pure virtual function,
either directly or indirectly, the result is undefined. However, constructors and destructors for
abstract classes can call other member functions.

Pure virtual functions can be defined for absfract classes, but they can be called directly only by
using the syntax

abstract class name .'.' function_name

This helps when designing class hierarchies whose base class(es) include pure virtual destructors,
because base class destructors are always called in the process of destroying an object. Consider the

following example:

/ / Declare an abstract base class with a pure vJ-rtual destructor.
class base
{ public:

baseO {}
virtual -base O =0; I ;

O.
ut$0tl OOP with C++ lnheritance

/ / Provide a definition for destructor.
base: : -base o
{}
class derived:public base
{ public:

derived O { }
-derivedO { } I;

int main ()

i derived *pDerived : new derived;
delete pDerived;)

When the object pointed to by poerived is deleted, the destructor for class derived is called
and then the destructor for class base is called. The empty implementation for the pure virtual
function ensures that at least some implementation exists for the function.

) Early binding Vs. Late Binding

Early binding occurs when all information needed to call a function is known at compile time.

The early binding is very efficient as all the necessary information to call a function is determined at

compile time, making the function calls very fast. Examples are: standard library function calls,
overloaded function calls, overloaded operators. Late binding refers to function calls that are not
resolved until run time. Its main advantage is flexibility. It allows to create programs that can

respond to events occurring while the pro$am executes without having to create a large amount of
code. Due to the same reason, it is the cause of slower execution times. Example of late binding is
virtual functions.

Solved Programs
i';]+inffirtiffi i$

OOP with C++ lnheritance
O.

utfr0rl

ExeRcrsEs
A. Review Questions
1. What does inheritance mean in C++? Explain its advantages.
2. What are the different forms of inheritance? Given an example for each.

3. How is direct base class different from the indirect base class declaration in C++?
4. Define Multiple Inheritance.
5. List the merits and demerits of single inheritance over multiple inheritances.
6. Explain the merits and demerits of private derivation over the public derivation.
7. What is a container class?

8. Whatare tlrc syntactic rules to be followed to avoid the ambiguity in single and mlltiple inheritance?
9. What is a virtual function and what are the advantages of declaring a virtual function in a program?
10. What is virtual base class and an abstract base class?
11. What is a pure virtual function? What are the merits and demerits of defining and declaring a

pure virtual function in a program?
t2. What are the syntactic rules to be observed while defining the keyword virtual?
B. Programming Exercises
1. Develop a program to prepare the marksheet of an university examination with the following

items read from the keyboard.
Name of the stu.dent, rollno, subject namq subject code, intemal marks, external marks.
Design a base class consisting of data members such as name of the student, rollno and subject
rutme. The derived class consists of the data members, viz., subject code, internal marks and
external marks.

::lt': jii
:.ifi
i..ij.'..ri
.iri$

O"
urSr0fl

The C++ l/O S m Bqsics

l. lntroduction
Every program takes some data as input, processes it and displays the output. Therefore it is

essential to know how to provide the input data and how to display the result in the desired form.
C++ supports all of C's rich set of VO functions. We can use any of them in the C++ programs. But
we restrain from using them due to two reasons. First, VO methods in C++ support the concepts of
OOP and secondly, VO methods in C cannot handle the user defined data types such as class object.

C++ uses the concept of stream and stream classes to implement its VO operations with the
console and disk files. This chapter explains, how stream classes support the console oriented input-
output operations. File-oriented UO operations will be discussed in the next chapter.

Note: The console is the basic interface of computers, normally it is the set composed of the
keyboard and the screen. The keyboard is generally the standard input device and the screen the
standard output device.

2. C++ Stream
A stream is a sequence of bytes. The sequence of bytes flowing into a program is called as input

stream and the one flowing out from the program is called as the output stream. In other words, a
program extracts the bytes from an input stream and inserts bytes into an output stream.

Qr
utSt0tl

O"

ffiffi oop'f, c** . r," c** ruosy"r", gr'o uiclii

extraclion from
input stream

insertion into
output stream

The data in the input stream can come from the keyboard or any other storage device. Similarly,

the data in the output stream can go to the screen or any other storage device. C++ contains several

pre-defined streams that are automatically opened when a program begins its execution' These

include cin and cout which have been used very often in our earlier pro$ams. In short, we can say

that stream is a general name given to a flow of data. In C++, a stream is represented by an object of
a particular class. Different streams are used to represent different kinds of data flow. The advantage

oasffeams in C++ is that streams are the best to write data to files and also to format data in memory

for later use in text VO windows and other GUI (Graphical User Interface) elements,

3. C++ Stream Classes
The C++ VO system contains a hierarchy of classes that are used to define various streams to deal

with both the console and disk files. These classes are called Stream Classes'

Stream Class Hierarchy
The hierarchy of the stream classes used for input and output operations with the console unit is

shown in figure 9./. These classes are declared in the header file iostream. This file should be

included in all the programs that communicate with the console unit.

ros

--J
istrr
#
t"," I lffimbutH

7__
eamr-
I

iostream

istream-withasffil [rostieam-withassign I I ostreql=ry]l!9999!

Flgure 9.1: Stream class hierarchY

ios is the base class for istream (input stfeam) and ostream (output stream) which are in turn base

classes for iostream (input/output stream).

Input stream

Or
ur$0tl The C++ l/O System Basics

The class ios provides the basic support for formatted and unformatted VO operations. The class

istream provides the facilities for formatted and unformatted input while the class ostream (through
inheritance) provides the facilities for formatted output. The class iostream provides the facilities for
har,ldling both input and output streams. Three classes, namely, istream-withassign,
ostream_withassign and iostream_withassign add assignment operators to these classes.

i. The streambuf Class: The streambuf class provides memory for a buffer along with class

methods for filling the buffer, accessing buffer contents, flushing the buffer, and managing the
buffer memory. It handles the most primitive functions for streams on a first-in-first-out basis.

ii. The filebuf class is derived from class streambuf and extends it by providing basic file
operations.

iii. The strstreambuf class is derived from class streambuf and is designed to handle memory
buffers.

iv. lfhe ios Class (General inpuUoutput stream class): This class contains basic facilities that
are used by all other input and output classes, and also a pointer to a buffer object, i.e.,
streambuf object. It declares constants and functions that are necessary for handling formatted
input and output operations.

v. The istream Class (input stream class): This class inherits the properties of ios class and
provides input methods. That is, it accepts data from an input device in the way you expect.
This class declares input functions such as get0, getline0 and read0 and contains overloaded
extraction operator >>.

vi. The ostream (output stream class) Class: This class inherits the properties of ios and
provides output methods. That is, it formats the data you send to an output device so that it
appears in the way you expect. This class declares output functions such as put$ and write0
and contains overloaded insertion operator <<.

vii. The iostream (input/output stream class) Class: This class inherits the properties of istream
and ostream through multiple inheritance and thus contains all the input and output functions.

The -withassign Classes: There are three -withassign classes. They are istream-withassign,
ostream-withassign and iostream-withassign.

These classes are derived from istream, ostream and iostream respectively. The -withassign
classes include the assignment operators. Using these operators the objects of the -withassign classes

can be copied. istream, ostream and iostream classes are made uncopyable by making assignment
operators private.

4. Unformatted llO Operations
In the iostream C++ library, standard input and output operations for a program are supported by

two data streams: cin for input and cout for output. Additionally, cerr and clog have also been

implemented (these are two output streams specially designed to show effor messages). The cout
object representing the standard output stream, which is usually directed to the video display, is a
predefined object of the ostream_withassign class, which is derived from the ostrclm cllss.
Similarly, cin object representing the stan"dard input stream, which is usually rlircclctl lo tltc

OOP with C++

OOP with C++ The C++ l/O System Basics
o,

utJ0rl

keyboard, is a predefined object of the isffeam-withassign class which is derived from istream. By

handling these two sffeams y-ou will be able to interact with the user in youf programs since you will
be able to show messages on the screen and receive his/trer input from the keyboard. As already

known the general format for cin and cout are as follows:

cin>>variable 1 >>variable2>>--->>variableN;

cout<<item I <<item2<<---<<itemN ;

The input data are separated by white spaces and should match the type of variable in the cin list.

Spaces, newlines and tabs will be skipped. The reading for a variable will be terminated at the

encounter of a white space or a character that does not match the destination type. When such a

situation is encountered, the next data item remains in the input stream and will be input to the next

cin statement of any other input statement (discussed later in the chapter).

4.1 Cerr and Clog

In addition to the function cout, C++ provides other functions of the class ostream called cerr and

clog. The cerr object corresponds to the standard error stream, which can be used for displaying

effor messages. By default, this stream is associated with the standard output device, typically a

monitor, and the stream is unbuffered. Unbuffered means that information is sent directly to the

screen without waiting for a buffer to fiIl or for a newline character. The clog object also

corresponds to the standard error stream which can be used for logging messages. By default, this

stream is associated with the standard output device, typically a monitor, and the sheam is buffered.

4.2 getO Function

The get0 function is used with input streams.

Therearethreeversionsofget()functionwhichareasfoIIows

i. No arguments returns the character being input' 'For example.' int get () ;

ii. One character-reference argument inputs the next character from the input stream (even if
this is a whitespace character) and stores it in the chafacter afgument.

istream cget (char&ch) ;

iii. Three arguments: A character afiay, a size limit and a delimiter (with default value \n'). A

null character is inserted to terminate the input string in the character array. The delimiter is

not placed in the character anay, but does remain in the input stream (the delimiter will be the

next character read)'

Thus, the result of a second consecutive get is an empty line, unless the delimiter character is

removed from the input stream (possibly with cin'ignore0)'

O"
utSt0tl OOP with C++ The C++ l/O System Basics

: Input of a string vla cln vs.
include< io stream>
rr< i nn ci- ri. . nnrrl- .

vvset

rr<ina cf A'.nin.
rr<.ina el-rl ..anA1.

v.rgr,

int main0 { // create two char arrays,
const int SIZE:80;
char bufferl IS]ZEl;
char buffer2lSIZEl;
/ / use ci-n to input characters int.o
cout << ttEnter a sentence:rr << endl;
cln >> bufferl;
// display bufferl contents
cout << "\nThe string read with cin was:r'<< endl<< bufferl- << endl <<

onrl I .

// use cin.get to input characters into buffer2
cln.get (buffer2, SIZE) i //version 2 of geto
// display buffer2 contents
cout << '?The string read with cin.get was:rr <<
return 0;

I // end main

endl << buffer2 << endl;

each with 80 el-ements

bufferL

I
Output

Enter a Sentence:

The snow flakes fall as a winter calls, the time just seems to fly
The string read with cin was:
The
The string read with cin.get was:

snow flakes fall as a winter calls, the time just seems to fly
Press any key to continue

In the above program, cin statement reads characters till it encounters a white space, i.e., "The".
remaining characters stay in the input stream and are assigned to buffer2 as soon as cin.get0 is
encountered, since geto can read white spaces.

4,3 putO Function
The function puQ is used with output streams, and writes the character ch to the stream.

Syntax

Examples

l. cout.put (65) ;
2. for(int i:O; i

^^rrf ^rr+ /i \.vvqL.I/qL\r/,

^^trf
hirf //\f t\.uvuu.lJuL\ \L t,

// nrrJ-nrrf 4 ttAu

< 256; i++)

ostream &put (char ch) ;

!c
0rJreL+t

#$%&(14
/0r23>

j67a9;''H
?@ABcDEFGR
IJKLMNoPo\

TUvwxYztf3ab"d€P
1--noz hiiklm9..,xy

ratuvwg
i>-v9

(/o

ffiffi oop
",ti,

c** ' n" c** lzo sv"t"t soio ui6l6il

Output

4.3 The getlineO Function
Getlineg is a line oriented input function. getlineQ operates similady to the third version of the

get member function. It reads a whole line of text that ends with a new line character. The getline

function removes the delimiter from the stream (i.e., reads the character and discards it), but does not

store it in the character arraY.

This function can be invoked as follows. cin. getline (line , sLze) i
The above function call invokes the getlineQ function which reads character input into the

variable 'line'. The reading is terminated as soon as either the newline character '\n' is encountered

or size-l characters are read (whichever occurs first). The newline character is read but not saved;

instead it is replaced by the null character.

#include<iostream>
using namespace std;
int main ()

{ const int SIZE = 80;
char bufferISIZEI; // creaLe
/ / inpuL characters in buffer
cout << trEnter a sentence: tt <<
cin. getline (buffer , SIZE) i
// displaY buffer contents
cout (("\nthe sentence entered is:" << end] << buffer << endl-i
-^+,,rn f\.!guu!fr vt
// anA main

array of 80 characters
via cin function getline

^*i I .eltur,

rnE55

0utput
Enter a sentence:

Once there was a green field
The sentence entered isl

Once there was a green field
Press any key to continue

Or
urd0tl OOPwith C++ The C++ l/O System Basics

4,4 The writeO Function
The write0 function is a line oriented output function. It displays an entire line and has the

following form:
cout.write (string, size) i

The first argument 'string' is the name of the string to be displayed and the second argument
'size' is the number of characters to display. If size is greater than the length of string, write0 does
not stop displaying automatically (write0 does not stop on encountering the null character), but it
displays beyond the bounds of line.
Example: char buffer[] : 'IHAPPY BIRTHDAy,';

cout.write (buffer, 10) ;
cout.wrj_te (TABCDEFGHIJKLMNOPQRSTUVWXYZil/ 10) ;

Elig

-
Program for unformatted l/O uslng read, gcount and wrlte

include< ios tream>
rr<.i nn <tA. .

^nr1t-
.

vvq9,

Ir<inc cl-rl ..nin.v vs. , vrrr t
trqinc c{-A..anrll.vrrv4,

int main ()

{ const int. SfZE : 80,
char buffer ISIZE] i
/ / use function read to input characters into buffer
cout << trEnter a sentence: " << endl_;
cln. getllne (buffer , 20) ;
/ / use functj-ons write and gcount to display buffer characters
cout << endl- << ItThe sentence entered was:fr << endl;
cout.write (buffer, SIZE) ;
cout << endl;
return O;

I // end main

0utput
Enter a sentence:
Today while the blossoms still cling to the vine
The sentence entered was:
Today while the blos
Press any key to continue

5.

ii:]I
tLJl

-

Formatted l/O Operations
There are a number of ways in which the output format of the fundamental types of C++ can be

al0ered, and a few ways in which the requirements on the input formif can be altered.
For example: A field width can be set, also the alignment within that field. For integral types, the
base can be set (decimal, octal, hexadecimal). For floating point types, the format.un b" niiO point
or scientific. All of these, and yet some, are controlled with a few formatting flags, and a little data.

-t

OOP with C++ The C++ l/O System Basics
o,

ur$0tl

All flags are set or cleared with the member functions "os.setf0" and "os.unsetf0". The iostream

objects maintanformat states controlling the default formatting of values. The format states can be

"oitroll"d
by member functions and by manipulators. Manipulators are inserted into the stream, the

member functions are used by themselves. The ios class contains a large number of member

Width(): The function width0 returns the cunent width. The optional w can be used to set the

width. Width is defined as the minimum number of characters to display with each output.

Syntax

inr width o ;
int width(int w)

For example: ..1..;T1? l,t,,,;

After you set a minimum field width, when a value uses less than the specified width, the field

will be padded with the current filI character (space by default) to reach the field width. If the

size of ihe value exceeds the minimum field width, the field will be ovelrun' No values are

truncated.

Output: 2 (that's four spaces followed by a'2')

The width0 can specify the field width for only one item, the one that follows immediately.

After printing one item, it reverse back to the default.

ii. PrecisionQ: The function precision0 is used to define the precision of the display of floating

point numbers. The function expects the number of digits (zol counting the decimal point or

. itte minus sign) that are to be displayed as its argument. The default precision is 6.

Syntax

streamsize precis j-on O ;
streamsize precisi-on (streamsize p) ;

For example

1.

float num = 314.L5926535i
cout.precision (5) ;

cout << num;
cout.precision (4) ;

cout << sqrt(2) << endl;
cout.precision(6) i

cout << -sqrt(2) << endl;

2.

J.

Output 314.16

Outpur 1.414

Output : -1.41,421

functions that helps us to format the output in a number of ways. The most important ones among

them are listed in the following table:

Read/set the field size,

Read/set the number of digits to be displayed after the decimal point of a float value.

Read/set a character that is used to fill the unused portion of a field.

Set a formatting flag such as left justification and right justification, for output.

Undo a flag specified.

Or
urilon

tn.

OOP with C++ The C++ UO System Basics

when used without argument, precisionQ returns the actual precision value:
cout.precision (4) ;
cout << cout.precision() ((", " << sqrt(2) << endl;
Unlike widthO, precisionOretai-ns the setting in effect until it is
reset
FillO: The function fillO either returns the curent fill chafacter, or sets the current fill
character to ch. The fill character is defined as the character that is used for padding when a

number is smaller than the specified width. The default fill character is the space character.
Syntax

char fill O ;
char fill(char ch)

ti:ii
llJl

-#include<iostream>
using namespace stdl
{ -+ --i - / \rrr L rttqlrr U
{ cout.width (10) ;

cout.fill('.');
cout << -5 << endli
cout.width(10);
cout << -5 << endl;
ral- rrrn O.
- v v s! rr v t

i

Output:-5
........-5

fillQ stays in effect until changed.

iv. SetfQ: The member-function setf0 is used to define the way numbers are displayed. It expects
one or two arguments, all flags are of the iostream class.
In the following examples, cout is used, but other ostream objects might have been used as
well:
a. To display the numeric base of integral values, use

cout. setf (ios: : showbase)

This results in no prefix for decimal values, 0x for hexadecimal values, 0 for octal
values. For example
cout. setf (ios : : showbase) ;
cout << 16 ((tt, tt << hex << l-5 ((tt, tr << oct << ,1 6 << endl;
resultis 16,0x10,020

b. To display a trailing decimal point and trailing decimal zeros when real numbers are
displayed, use

cout. setf (ios: : showpoint)
For example: cout. setf (ios: : showpoint) ;

cout << 16.0 << tt, tt << L6.1 ((tt, tt << 16 << endl;
resultis 16.0000. 16.1000. 16

ffimw OOP with C++
O"

The C++ t/O System Basics Ultl0ll

d.

Note that the last 16 is an integer rather than a real number, and is not given a decimal

point.

If ios::showpoint is not used, then trailing zeros'are discarded. U the decimal part is

zero, then the decimal point is discarded as well.

Comparable to the dec, hex and oct manipulators

cout.setf (ios: :dec, j-os: :basefiefd) ;
cout.setf (ios : :hex, ios : :basefield) ;

or cout.setf(ios: :oct, ios: :basefield) ; canbeuSed.

To control the way real numbers are displayed cout.setf(ios::fixed, ios::floatfield) or

cout.setf(ios::scientific, ios::floatfield) can be used. These settings result in,

respectively, a fixed value display or a scientific (power of 10) display of numbers.

Forexample: cout.setf (ios::f ixed, ios::fl-oatf ield) ;
cout << sqrt(200) << endl-i
couE.setf (ios: :scientific, ios: :floatfield) ;
cout << sqrt(200) << endl;

result is 14.142136
1.414214e+Ol

lErl,g

include< io stream>
using namespace std;
int main ()

{ cout.setf (ics: :right, ios: :adjustfield) ;
cout << ' [' << -55 << t] t << endl;
cout.setf (ios: :1eft, j-os : :adjustfield) ;
cout << ' I t << -55 << '] t << endl;
cout.setf (ios : :internal, ios: :adjustfield) ;
cout << ' [t << -55 << '] ' << endl;
cout.width(101;
cout. setf (ios: : right, ios: : adjustfiel-d) ;
cout << ' It << -55 << '] t << endl;
cout.width(10);
cout. setf (ios: :1eft, ios: : adjustfield) ;
cout << ' [t << -55 << '] ' << endli
cout.width(10);
cout.setf (ios: :internal, ios: :adjustfield) ;
cout << ' [t << -55 << '] t << endli
return 0i

m]&

Output
t-ssl
t-s5l
t-ssl
t -s5l

t-55 l
t- 5sl

O"
utSt0rl OOP with C++ The C++ UO System Basics

v. UnsetfQ:To turn a flag off, use the unsetf0 function:
cout.setf(ios::showpos); // Eurn on the ios::showpos flag
cout << 27 << endl-;
couL "unsetf (ios: : showpos) ; / /
cout << 28 << endl;
This results in the following output:
+27
28

turn of f t.he 1os: : showpos f laq

6. M an i pu lators
You can use the manipulators for some simple formatted VO.

Manipulators are functions which are written in such a way that by placing
a manipulator in the chain of << operators, you can al0er the state of the

stream. C++ provides various stream manipulators that perform
formatting tasks such as setting field widths, setting precision, setting and unsetting format state,

setting the fill character in fields, flushing streams, inserting a newline into the output sffeam (and

flushing the stream), inserting a null character into the output stream, skipping whitespace in the

input stream. The following are some of the manipulators available in the iostream package. The
lators that take arguments are declared in the file iomanip.h and the rest are in iostream.h.

dec
cout << dec << inWar: or
cin >> dec >> intvar:

Converts integers into decimal digits, Similar to the
o/od format in C.

hex
cout << hex << intvar: or
cin >> hex >> intvar:

Hexadecimal conversion as in ANSI C's %x format.

oct
cout << oct << intvar: or
cin >> oct >> intvar;

Octalconversion (%o in C).

WS cln >> ws;
Discards whitespace characters in the input
stream.

endl cout << endl: Sends newline to ostream and flushes butfer.

ends cout << ends: Outputs a null.

flush cout << flush; Flushes ostream's butfer.

resetiosflags(long)
cout << resetiosflags (ios::dec); or
cin >>resetiosflags(ios : :hex) ;

Resets the format bits specified by the long integer
argument.

setbase(int)
cout << setbase(10); or
cin >> setbase(8):

Sets base of conversion to integer (argument must
be 0. 8. 10. or 16). Zero sets base to default.

setfill(int)
cout << setfill('.'); or
cin >> setfill{"):

Sets the fill character used to pad fields (width
comes from setw).

setiosflags(long)
cout << setiosflags(ios::dec); or
cin >> setiosflaos(ios::hex):

Sets the format bits specified by the long integer
aroument.

setprecision(int)
cout <<'setprecision(6); or
cin >> setorecision(1 5):

Sets the precision of floating-point conversions to
the soecified number of dioits.

setw(int)
cout << setw(6) << var; or
cin >> setw(24) >> buf;

Sets the width of a field to the specified number of
characters.

I
ffiffi The C++ l/O System Basics

Or
ut$0tl

dec, hex, oct: These manipulators enforce the input/output of integal numbers in,
respectively, decimal, hexadecimal and octal format. The default conversion is decimal. The

conversion takes effect on information inserted into the stream after processing the

manipulators.

E]
-#include<iostream>
using namespace std;
int main ()
{ inti=100;

cout << dec << i << endl;
cout << hex << i << endl;
cout << oct << i << endl;
return 0;

l

Output
100

64

t44
ii. setbase(int b): This manipulator can be used to display integral values using the base 8, 10 or

16. It can be used instead of oct, dec, hex in situations where the base of integral values is
parameterized.

i nc lude<ios tream>
inc lude< iomanip>
using namespace std;
int main ()

{ cout << setbase(16);
cout << 100 << endl;
return 0i

] tL_il

-
This code uses setbase manipulator to set hexadecimal as the basefield. The output of this

example is the hexadecimal value of 100, i.e.,64.

setw(int width): This manipulator expects as its argument the width of the field that is
inserted or extracrcd next. It can be used as manipulator for insertion, where it defines the

maximum number of characters that are displayed for the field, and it can be used with
extraction, where it defines the maximum number of characters that are inserted into an array.

For example: To insert 20 characters into cout, use: cout<(setw (20) <<8<< endl;
To prevent array-bounds overflow when extracting from cin, setwQ can be used as well:
cin >> setw(sizeof(array)) >> array;
A nice feature here is that a long string appearing at cin is split into substrings of at most

sizeof(array) - I characters, and an ascii-z is appended.

OOP with C++

t.

i--1&

Iu.

O"
ur$0tl OOP with C++ The C++ l/O System Basics

Note
a,

b.

c.

setw0 is valid only fot the next field. It does not act like, e.g., hex which changes the
general state of the output stream for displaying numbers.

When setw(sizeof(someArray)) is used, make sure that someArray really is an array,

and not a pointer to an array: the size of a pointer, being 2 or 4 bytes, is usually not the

size of the array that it points to....

In order to use setw0 the header file iomanip must be included.

include< ios Lream>
include< iomanip>
using namespace std;
int main ()
{ inti:100;

cout << setw(6) << dec
cout << setw(6) << hex
cout << setw(6) << oct
return 0;

)

<<i
<<i
<<1

<< endl;
<< endl;
<< endf;

Output
100

64
t44
Here each variable is displayed in a six-character field aligned at the right and padded with
blanks at the left.

iv. setfill (int ch): This manipulator defines the filling character in situations where the values of
numbers are too small to fill the width that is used to display these values. By default the blank
space is used.

inc lude< iostream>
inc Lude <iomanip>
using namespace std;
int main ()
{ inti=100;

cout << setfill (' . ') ;
cout << setw(6) << dec
cout << setw(6) << hex
cout << setw(6) << oct
return 0;

)

<< i << endl;
<< i << endl;
<< i << endl;

mlg

Output
...100
....64
...144

OOP with C++ The C++ l/O System Basics

Y.

The default alignment of fixed-width output fields is to pad on the left, resulting in right-
justified output. The justification information is stored in a bit pattern catled the format bits in
a class named ios, which forms the basis of all stream classes.

setprecision(int width): This manipulator can be used to set the precision in which a float or
double is displayed. In order to use manipulators requiring arguments the header file iomanip
must be included.

tFitlLll ,

4

lncLude< io strea:n>
inc lude< iomanip>
using namespace std;
int maino { double f :3. L41.59;

cout << setprecision(5) << f << endl;
cout << setpreclsion(9) << f << endl;
return 0;

)

Output
3.t4r6
3.r4r59

vi. resetiosflags(Reset format flags): Unsets the format flags specified by paramercr
mask.Behaves as a call to stf,eam's member: seLf(0,mask);

You must include <iomanip> to use this manipulator.

Parameters

Mask: Mask representing flags to be reset. This is object of type ios_base::fmtflags.
This function should only be used as stream manipulator.

include <ios tream>
j-ncl-ude<iomanlp>
using namespace stdl
inr m:in/\ J ^^"t << hex (< setiosf Iao.q(io.s base::showlrasa):t vvsu \rvd_vqJg..orrvwlqoE,,,

cout << 100 << endl;
cout << resetiosflags (ios_base: : showbase) ;cout << 100 << endl;
ral_rrrh n.! v 9 g& r. v ,

1I

This code first sets flag showbase then resets it using resetiosflags manipulator.

0utput
0x64
64

o"
ur$0tl OOPwith C++ The C++ l/O System Basics

6. I Correspondence between iostream.h and iomanip.h

Correspondence between iostream.h methods (functions) and iomanip.h manipulators is as

follows:

To use any of the format flags in the following table, insert the manipulator setiosflags with the

name of the flag as the argument. Use resetiosflags with the same argument to revert to the format
state before you use the setiosflags manipulator.

ios::skipws Skips white space on input

ios::left Left justifies output within the specified width of the field

ios::right Right justifies output

ios::scientific Uses scientific notation for floating point numbers (such as -1.23e+02)

ios::fixed Uses decimal notation for floating-point numbers (such as '123.45)

ios::dec Uses decimal notation for integers

ios::hex Uses hexadecimal notation for integers

ios::oct Uses octal notation for integers

ios::uppercase Uses uppercase letters in output (such as F4 in hexadecimal, 1 .23E+02)

ios::showbase
Indicates the base of the number system in the output (a 0x prefix for hexadecimal and a 0
prefix for octal)

ios::showpoint Incfudes a decimal point for floating-point output (For example: -123.)

ios::showpos Shows a positive sign when display positive values.

ios::internal Padding after sign or base indicator

ios::unitbuf Flush all streams after insertion

ios::stdio Flush stdout. stderr after insertion

ffi OOP with C++ The C++ l/O System Basics
Or

ufSr0rl

6,2 Difference betyyeen manipulators and ios functions [oct. I I 5/vtl

Solved Programs

These are like the normal functions which are Manipulators are the instructions to the output
stream to modify the output in various

The setf$ function is used to set the flags of lOS. Manipulators directly insert the formafting
instructions into the stream.

These functions use data members of IOS class This is not the case with manipulators.

We can create user defined manipulators.We cannot create user defined members or
functions.

put on through the setf() function can be Such flexibility is not available with manipulators.

Example: setf O, unsetf O , precision O,
width ()

Example: setbase (), setfill () r
setprecision (), setwidth (), dec,

O"
urEtorl OOP with C++ The C++ l/O System Basics

"*=

t'rit'#"ltggs" tlllo :li''-"irrjr.jrii.ijffir.n

ffi oopwrh c** . rhe c**,/osystem Easics uluor

**iffi rgivm

EXERCISES

t.

2.

4.

5

6.

What is a stream?

Explain the stream classes in C++'

Write a short note on unformatted VO operations'

Write a short note on formatted VO operations'

What is the role of fi110 function?

Discuss the syntax of set0 function?

Q,
utStoll OOP with C++ The C++ l/O System Basics

B. Programming Exercises

l. Write a progfam to read a list containing item narne, item code, and cost interactively and
produce a three-column output as shown below.

Note that the name and code are left justified and the cost is right justified with a precision of
two digits.

State errors, if any, in the following statements:

i. cout << (void*) amount;
ii cout << width () ;
iii. cout.width(i.0) .precision(3) ;

iv. cout. Setf (ios: :scienti-fic, ios: :teft) ;

*-**gpgp****--
-.'.t'*i;il++,.iil'

""'"' t,.ili #ti.if,i;li"toot'r ii"-"liii"iffi
,.''_rj,tlt Utirtii ';,1; ...-.;..;riifiil,-"lriiii.'!ri"jir i'i;.tfireo.rr.t<i*.t, N.l,i.ii"..i,,.1,.,..ii-,,i ,rj.j i...i;11...-':fli; .'.ji.,1fi.it .ltn:|fi,

,iiilir;inlfr"i.i-.*"-*-"****u*uu

tt'iu'tt'$$f*
* + 1i1-r' '-o-=--*HH-6Hgfffi"ffi

Ii

OOP with C++ The C++ UO System Basics

.'**i+tn$$ffi+#$F

f'
)i

^^fu
ul$1011

Workin Wilh Files

l. lntroduction
All the programs we have seen so far use input only from the keyboard, and output only to the

screen.

If we were restricted to use only the keyboard and screen as input and output devices, it would be
difficult to handle large amount of input data, and output data would always be lost as soon as we
turned off the computer.

To avoid these problems, we can store data in some secondary storage device, usually magnetic
tapes or discs.

Data can be created by one program, stored on these devices, and then accessed or modified by
other programs when necessary.

To achieve this, the data is packaged on the storage devices as data structures calledfites.
The easiest way to think about a file is as a linear sequence of characters.

There are two types of data files:
i. Sequential Access Files: These files must be accessed in the same ,

order in which they were written. This process is analogous to
l

audio cassette tapes where you must fast forward or rewind
through the songs sequentially to get to a specific song. ,,

In order to access data from a sequential file, you must start at the beginning of the file and
search through the entire file for the data that you want.

10r1
:

utt|otl

ii. Random Access Files: These files are analogous to audio compact disks where you can easily

access any song, regardless of the order in which the songs were recorded. Random access

files allow instant access to any data in the file.

Unfortunately, random access files often occupy more disk space than sequential access files.

File l/O Classes

There are 3 File VO classes in C++ which are used for File Read/lVrite operations. They are:

o ifstream can be used for File read/input operations (derived from istream)

o ofstream can be used for File write/output operations (derived from ostream)

o fsfeam can be used for both readlwrite C++ file VO operations (derived from iostream)

To use any of these classes, you must have the following include statement in your program:

#include<fstream.h> or #include<fstream>
This #include automatically includes the header file iostream.

2, Creating a Stream
In input/output of C++ handles file operations which are very much similar to the console

inpuVouiput operations. A file sream is an interface between the programs and the files.

The stream that supplies data to the pro$am is known as input and one that receives data from

the program is called as output stream.

In short, the input stream reads data from file and the output stream writes data to the file. In
C++, you open a file by linking it to a stream

Flgure 10.1: Flle Inpuu output stream

There are three types of streams: input, output and inpuVoutput. To create an input stream, you

must declare the stream to be of class ifstream. To create an output stfeam, you must declare it as

class ofstream.

()"
utt0i OOP with C++ Working with Files

Streams that will be performing both input and output operations must be declared as class
fstream. For example: This fragment cfeates one input sFeam, one output stream and one stream
capable ofboth input and output.

iostream
file

fstream
file

Flgure 10.2

i-f stream 1n; / / input
ofstream outi // ouLpuL
fstream i-o; / / inpuE and output

Once you have created a stream, one way to associate it with a file is by using open0 function.

3. Opening a File
A file can be opened in two ways: by using the constructor function of the class and by using

member function open0 of the class. The first method is useful when we use only one file in the
stream and the second method is used when we want to manage multiple files using one stream.

3. I Opening Files using Constructor
Generally constructor is used to initialize an object while it is being created. Here, a filename is

used to inittalize the file stream object. This involves the following steps:

i. Creatp a file stream object to manage the stream using the appropriate class (as explained
above).

ii. Initialize the file object with the desired filename.

For example: of stream out ('f outf ile") ; //output only
The above statement will create a out as an ofstream object that manages the output stream.

This object can be any valid C++ names such as o-fiIe, myfile or fout. This statement also opens
the file outlile and attaches it to the output strearn out.

Similarly,
ifstream in('rinfile") ; / /input oil.y

this statement will create in as ifstream object and attaches it to the file infile for reading (input);

In the above method the functions for reading and writing a stream we have used only one argument

i.e., filename. However these functions can take two arguments, the second one for specifying the file

mode. The general form of the function open0 with two arguments is:

stream-obiect. o n (ttfilenamett, mode) ;

The second argument mode (called file mode parameter) specifies the purpose for which the file

is opened.

We can combine two of more flags or (modes) by using bitwise operator OR(D'

For exampie: To open a file for output and position it at the end of existing data, we can write

statement as follows:
ofstream outs ("outfilerr, ios::out l ios::ate) i

If we do not provide the value for the mode parameter then it will use the default values shown in

the following table.

ofstream I ios::out I ios::trunc

ifstream I ios::in

fstream I ios::inlios::out

That is for an ifstream (open for reading) the default mode is ios::in and for an ofstream (open for

writing) the default mode is ios::out or ios::trunc etc.

3,2 Opening a File using OPeno

As stated earlier, the function open0 can be used to open multiple files that use the same stream

objecl For example: We may want to process a set of files sequentially. In
-such

cases, we may

crJate a single stream object and use it to open each file in turn. This is done as follows:

l-e-stream-c1as s stream-ob j ect ;
stream-ob j ect . open (" f i lename'1

Example: ofstream fil-e;
file. oPen ("examP1e") I

stream (for output)
stream to examPle

/ / rraala

/ | annnaal/ / evrr.:vve

data to the end of file.

file at end-of-file (ate stand for at end

fails if the file does not already exist,

fails unless ios::app or ios::ate is set.

Truncates file if it already exists.

o,
eF|0i

t

OOPwith C++ Working with Files

3.3 Points to remember when using Modes of File
i. Opening a file in ios::out mode also opens it in the ios::trunc mode by default. The ios:: trunc

value causes the contents of a preexisting file by the same name to be desffoyed, and the file is
truncated to zerc length. When creating an output stream using ofstream, any preexisting file
by that name is automatically truncated.

ii. Including ios::ate causes a seek to the end of file to occur when the file is opened; but VO
operations can still occur anywhere within the file.

iii. The ios::binary value causes a file to be opened in binary mode. By default, all files are
opened in text mode. In text mode, various character translations may take place but no such
thing occurs in the binary mode.

4. Closing a File
The member function close$ is used to close a file which has been opened for file processing

such as to read, to write and for both. The close0 member function is called automatically by the
destructor functions. However one may call this member function to close the file explicitly. The
close member function will not contain any arguments nor does it return any value.

The general syntax for close0 is as follows:
#include<fstream>
rrni d m> i n / \w vrs rrrs-1r \ /

It
fstream infile;
infi la Ahan lltAaf rfi larr .inc..in | | ine..nrrf\.

\ sqvsri4v , | | vsv, t

iniii". close () ; / / cd-ling to close the fil-e

5. Checking for Failure with File Commands
It may happen that there is an error while opening and closing file. So to avoid that we have to

always include some check to make sure that file operations have completed successfully, and error
handling routines in case they haven't. A simple checking mechanism is provided by the member
function "fail0".

The function call
in_stream. fail O ;

returns True if the previous stream operation on "in-stxeam" was not successful (perhaps we tried
to open a file which didn't exist).

If a failure has occurred, "in-sffeam" may be in a comrpted state, and it is best not to attempt any
more operations with it.

L)n
urfr0iOOPwith C++ Working with Fites

The following example program fragment plays very safe by quitting the program entirely, using
the "exit(l)" comrnand from the library "cstdlib":
include<ios tream>
lnclude<f stream>
include<cs tdl ib>
using namespace std;
I ^r *^ i ^ / \rrrL r[qrtr \ /
t

ifstream in-stream;
in-stream. open ("PQR. txtrr) ;
if (in_stream. fa1l O)

{

cout << rrsorry, the f ile couldn't be opened | \nt'i
exit (1) ;

)

There is an alternate method. In the above example if open0 fails, the stre,rm will evaluate to
false when used in a Boolean expression. This can be tested as follows:
'i f / li n qirarm\

t
cout << "Sorry, Cannot open file.\n"i
]

5. Detecting the End-of-File
While reading from a file, it is necessary to know whether the end-of-file is reached or not. The

eof0 member function is used to check whether a file pointer is reached at the end of a file or not . If
it is successful, eof0 function retums a nonzero, otherwise returns azeto.

Syntax
include<fs tream>
rrni rl ma i n / \

{
ifstream infile;
inf il-e. open ("text ") ;
while(!infile.eofO)
It.

l

ffi

In addition to eof0, other member functions exist to verify the state of the stream

return a bool value):

i. bad0: The badQ stream state member function is used to check whether any

operations have been attempted or there is an unrecoverable error.

The bad0 member function returns a nonzefo if it is true; otherwise returns azgro.

(all of them

invalid file

o,
uilorl OOPwith C++ Working with Files

Syntax
inc Lude <fs Lream>

include<cstdI ib>
rrn'i rl ma i n / \

{ ifstream infile;
inf ile . open ("text r') ;
if(infile.badO)

{
cerr << rrOpen failurett << endli
exit (1);

)

ii. fait0: The fail0 stream state member function is used to check whether a file has been opened

for input or output successfully, or any invalid operations are attempted or there is an

unrecoverable error.

If it fails. it returns a nonzero character.

Syntax
include < f stream>
void main ()
{

ifstream infile;
infile. open ("texL") i
while (! infile. fail ())

i
cout << t'couldntt open a f ilen << endl;
continue:

goodQ: The good0 stream state member function is used to check whether the previous file
operation has been successful or not. The good0 returns a nonzero if all stream state bits are

zero.

Syntax
nclude<fstream>

include<cstdl i-b>
rrai rl ma i n / \

{
ifstream infile;
infile.open("text") I
if (infile. good O)

)

lu.

OOP with C++ Woffing with Files
Or

utSr0rl

7. File Pointers and their Manipulation
Each file has two associated pointers known as the file pointers. One of them is called the input

pointer or get pointer and the other is called the output pointer or put pointer. We can use these
pointers to move through the files while reading or writing. The input pointer is used for reading the
contents of a given file location and the output pointer is used for writing to a given file location.

All VO streams objects have, at least, one stream pointer.

o if stream, like istream, has a pointer known as get pointer that points to the next element
to be read.

o of stream, like ostream, has a pointer put pointer that points to the location where the
next element has to be written.

o Finally f stream, like iostream, inherits both get and put pointers.

These stream pointers that point to the reading or writing locations within a stream can be read
and/or manipulated using the following member functions:

i. tellgQ and tellpQ : These two member functions admit no
parameters and return a value of type pos_type (according ANSI-
C++ standard) that is an integer data type representing the current
position of get stream (Input stream) pointer (in case of tellg) or put
stream (Output stream) pointer (in case of tellp).

ii. seekg0 and seekp0 : This pair of functions serve respectively to
change the position of stream pointers get and put. Both functions
are overloaded with two different prototypes:

seekg (pos_type position) ;
seekp (pos_t sition);

Using this prototype the stream pointer is changed to an absolute position from the beginning
of the file. The type required is the same as that returned by functions tellg and tellp.

seekg(off_type offset, seekdir direction) ;
seekp(off tvpe offsel, seekdir direction

Using this prototype, an offset from a conffete point determined by parameter direction can be
specified. It qan be:

ios::beg offset specified from the beginning of the stream

ros::cur offset specified from the current position of the stream pointer

ios::end offset specified from the end of the stream

The values of bgth stream pointers get and put are counted in different ways for text files than for
binary files, since in text mode files some modifications to the appearance of some special characters
can occur. For that reason it is advisable to use only the first prototype of seekg and seekp with files
opened in text mode and always use non-modified values returned by tellg or tellp. With binary
files, you can freely use all the implementations for these functions. They should not have any
unexpected behavior. The following example uses the member functions just seen to obtain the size
of a binary file:

o"
utEtotl OOP with C++ Working with Files

t-fitg

t t ^rt ^r-r-^ .r.e sizg/ / u!Larrralrv !fr

#include<iostream. h>
#include<fstream. h>
const char * filename : rrexampfe.txtrrI
i nl- m: i n I I

{

long 1,m;
i fcfrarm fi lar

vqILr !!!v,

file.open(filename, ios: :inl ios: :binary) i
1 : fil-e.tel]gO;
file.seekg(0, ios: :end) ;
m = file.rellgo;
f i la nla<a/\

vf vse \ / t

cout << "size of tf << fil-enamei
cout << tt is tt (((m-I) << tt bytes.\ntti
return 0i

i E:Ig

Output
size of example.txt is 40 bytes.

8. Reading / Writing a
The following member functions are used

file.

l. seto

Character from a File
for reading and writing a character from a specified

This member function is used to read an alphanumeric character from a specified file.

Syntax
nclude<fstream>

void main ()

{
ifstream infile;
char ch;
infile. open ("text") i

:::
while(!infile.eofO)
{

ch = infile. get ()

I / / end of while loop

ffi OOP with C++ Woking with Files
O"

uFt0i

ii. puto
This member function is used to write a character to a specified file or specified output stream.

Syntax
include<fstream>

vold main ()

{
ofstream outflle i
char ch;
outfife. open (Ittext") i

.::
while (!outfile.eof ())

t
ch : outfiLe. get ()

cout.put(ch) // display a character onto a screen

:::
)

]

ItsntL-llffl Program using get0 and putQ functlon
1nc lude< f stream>
incl-ude<c s tr ing>
using namespace stdi
ini main{l
{

char string [80] ;
cout << "Enter a string \n";
cin >> string;
int len : strLen(string);
fqfra:m fi'la:
€ila nnan/ilTavl-[.i6q.. j6 |vrvr: \ rv<rg

'
I

for (int i: 0; i<len; i++;
f1le.put(strinStil);
file.seekg(0);
char ch;
while (file)

{
fila aaf/ahlr-- *-") i
cout << ch;

)
return 0;

l

/ / input and output stream
ios: :out) i

/ / nt.t a r:harnr:fef to file
/ / Zoto the start

/ / net : r:harncter from fil-e
// disnlaw iI on Screen

Output
Enter a string :

Program using get0 and put0

Program using get0 and put0
//input
// output

o"
urd0i OOP with C++ Working with Files

9. writeO and readO Functions
Another way to read and write blocks of binary data is to use C++'s read0 and write0 functions.

The first one (write) is a member function of ostream, also inherited by ofstream. And read is
member function of istream and it is inherited by ifstream. Objects of class fstrearn have both.

Their prototypes are:
ostream &write (char * buffer, streamsize size) ;
istream &read(char * buffer, streamsize size);

where, buffer is the address of a memory block where the read data are stored or from where the

data to be written are taken. The size parameter is an integer value that specifies the number of
characlers to be read/written from/to the buffer.

The following program writes a stu.cture to disk and then reads it back in

include< f s tream>
#include<cstri-ng>
using namespace std;
struct status {

ahar n:mo I RO I :

doubl-e balance i
unsigned long account-num; J;

int main ()
I
(

struct status acci
strcpy (acc. name, ttabctt) I
acc . bal-ance = 1L23 .23 ;
acc.account_num = 3434;
/,/write daLa
ofslream outbal("bafancetr, ios: :out I ios: :binary) ;
if (! outbal)
{ cout << Itcannot open f ile\n")i

return 1;
)

outbal.write ((char *) &acc, slzeof (struct status)) ;
outbal. close O ;
/ /now read back;
if stream lnbaL ("ba1ance'r, ios: : j-n I ios: :binary) ;
if(!j-nbal)
{ cout << "cannot open f il-e\n") ;

return l-;)

inbal.read((char *) &acc' sizeof(stluct status));
cout << acc.name << endl;
cout << ttAccount #tt << acc.account-numi
couc.precision (2) ;
cout. setf (ios: : fixed) ;
cout <<endl << rrBalance: $tt << acc.balance;
inbal .cl-oseO;
return 01

) trilg

only a single call to readO or write0 is necessary to read or write the entire structure. Each
individual field need not be read or written separately.

If the end of the file is reached before size characters have been read, then readg simply stops,
and the buffer contains as many characters as were available. To determine how many characters
have been read, gcountQ function can be used. Its prototype is: /
streamsize gcount O ;

It returns the number of characters read by the last binary input operation.

10. Buffers and Synchronization
When we operate with file streams, these are associated to a buffer of type streambuf. This bufferis a memory block that acts as an intermediary between G strearn and the physical frle.

For example: With an out stream, each time the member function put (writes a singlJ ciraracter) is
called, the character is not written directly to the physical file with which the strealr is associated.
Instead of that, the character is inserted inthe buffer for that stream.

When the buffer is flushed, all data that it contains is written to the physic media (if it is an out
stream) or simply erased (if it is an in stream). This process is called synchronization and it takes
place under any of the following circumstances:
i. When the file is closed: Before closing a file all buffers that have not yet been completely

written or read are synchronized.
ii. When thebuffer is full: Buffers have a certain size. When the bufferis full it is automatically

synchronized.

iii. Explicitly with manipulators: When certain manipulators are used on streams a
synchronization takes place. These manipulators are: flush and endl.

iv. Explicitly with function sync0: Calling member function sync0 (no parameters) causes an
immediate syncronization. This function returns an int value equal to -i if the sheam has no
associated buffer or in case of failure.

I l.
i.

Other Functions
ignore0: Used when reading a file. If you want to ignore cefiain amount of characters, just
use this function. In fact, you can use seekg0 instead, but the ignore0 function has one
advantage - you can specify a delimiter rule, where the ignore(f funciion will stop. The
prototype is:

istream& ignore (iit icount, de i m i f or \ .

where, nCount is the amount of characters to be ignored and, delimiter is what its name says. It
can be EOF if you want to stop at the end of the file. This way, this function is the same as
seekg0. But it can also be '\n' for example: which will stop on the first new line. ignore0
reads and discards characters until either nCount characters fiave been ignored (1 by default)
or the character delimiter is encountered (EoF by default). Here is

"*a-pld,

o"
utEtotl OOP with C++ Working with Files

lt.

lt:]I,-
#include<fstream. h>
void main ()

t
//if we have 'rHello Worldrr in test-file.txt
ifstream File ("test_fi1e. txtrt) ;
static char arr t10l;
//stop on the 6th symbol, if you don't meet trIrl
/ /in case votl mec1- r|i tr- qi- .o thgrg
Flle.ignore(6,'1');
File.read(arr,10);
cout << arr << endl; //it should display "10 Worldlrl
F1l-e. close O ;

E]I,ry

getline0: This function can be used to read line-by-line, but it can be set to stop reading if it
met a certain symbol. Here is how you should pass the parameters to it:

The getline0 function reads characters into the "array" until either afiay-size-l characters have
been read, the character specified by delim has been found, or the end of the file has been
encountered. The array will be null terminated by getline0. If the delimiter counter is
encountered in the input stream, it is extracted but not put into array.
And here is a code example:

Etlg

#incl,ude<f stream. h>
void main ()
I
t

//if we have I'HeI1o Wor1d" in test_fiIe.txt
ifstream Fil-e ("test_fi1e. txtil) ;
static char arrtl-01;

/ *raad rrn1- i I ano af 1-ha<a h:n/ ! vsv, .-*rpens :

1) You have read 10
2) You mec the letter uou

3) There is new line

File.getline (arr, 10,'o') ;
cout << arr << endl-i //Lt should display "Hell"
File.closeO;

ln.

r:ltlE!

peek0: This function will return the next character from an input file stream, but it won't
move the inside-pointer. I hope you remember, that get0 for example: returns the next
character in the stream, and after that, it moves the inside-pointer, so that the next time you
call the get0 function, it will retum the next character, but not the same one. Well, using
peek0 will return a character, but it won't move the cursor. So, if you call the peek$ function,
two times in succession, it will retum a same character. Consider the following crxlc cxurnplc:

ffiffi OOP with C++ Working with Files
Or

utdotl

#include<fstream. h>
void main ()

{
//if we have I'Hello World" in test-file.txt
ifstream File ('ttest-f i1e. txtrr) ;
char ch;
Fi1e. get (ch) ;
cout << ch << endfi //should display "H'r
cout <<char(File.peekO) << endL; //sh.oul-d display
cout <<char (File.peek O) << endf ; / / shoul-d display
Fi1e. get (ch) ;
cout << ch << endl; //should display 're" again
File. close O ;

[^ile
tlail idai n

. E]=
So, if
above

iv.

r:11ILII,-

The peek() function actually returns the ASCII code of the char, but not the char itself.
you want to see the character itself, you have to call it the way which is given in the

example.

_untinkQ: Deletes a file. Include io.h in your program, if you are going to use this function.
Here is a code example:

#include<fstream. h>
#include<io. h>
void main ()

{ ofstream FiIe;
File.open("dei-ete-test.Lxt") ; / /cteaLes the file
FiIe. close O i
-unl-ink

("delete-tesL. txt") ; / /deLetes the fiLe
/ /tries to open the file, but if it does not exists
//t]ne function will return error ios::fail-bit
Fi-l-e. open (ttdel-ete-test. txtrr, ios : : nocreate) ;
i / see i-f it returned it
if (File.rdstateO =: ios: :failbit)
cout << "Error. . . !\nt' ; / /yup, it did
File. close O ;

putback0: This function will return the last read character, and will move the inside-pointer,

one with -1 char. In other words, if you use get0 to read a char, then use putback0, it will
show you the same character, but it wil,l set the inside-pointer with -1 char, so the next time
you call get0 again, it will again show you the same character. Here is a code example:

tT-ltLtl
,4

#include<fslream. h>
void main ()

{

v.

O"
utilotl OOP with C++ Working with Files

/ /r,est, f i le-t-xt should have this text- ItHello World'r
if stream FiLe ("test_f il-e. txtrr) i
char ch;
Eila aaf/ahl.

Yv e \ vrr / t

cout << ch << endl; //iL wiII display "HI
Fife.putback (ch) ;
cout << ch << endli //it wLII again display "H"

E'i la nal- /n].r\.
Yve \vr./ f

cout << ch << endL; //iL wiII display "H" again
File. close O ;

flushQ: When dealing with the output file stream, the data you save in the file is not actually
immediately saved in it. There is a buffer where it is kept, and when the buffer gets filled, then
the data is put in the real file (on your disk). Then the buffer is emptied, and so on.

But if you want to save the data from the buffer, even if the buffer is still not full, use the
flush0 function. Just call it this way- FileHandle.flush0. And the data from the buffer will be
put in the physical file, and the buffer will be emptied.And something in addition (advanced)-
The flush0 function calls the sync0 function of the associated streambuf.

12. Random Access File Processing
Every open file has a position or a position indicator associated with it. This indicates the position

where read and write operation takes place.

In all earlier programs, we read the file sequentially, i.e., incase of sequential access file, data are
stored and retrieved one after another. The file pointer always moves from the starting of the file to
the end offile. On the other hand, a random access file need not necessarily start from the beginning
of the file and move towards the end of the file. Random access means moving the file pointer
directly to any location in the file instead of moving it sequentially.

The random access approach is often used with the data base files. In order to perform both
reading and modifying an object of a data base, a file should be opened with mode of access for both
to read and to write, The header file <fstream> is required to declare a random access file. We know
that fstream is a class which is based on both the classes of ifstream and ofstream. The fstream
inherits two file pointers, one for input buffer and other for output buffer for handling a random
access file both for reading and writing.

Declaring a Random Access File
The random access file must be opened with the following mode of access:

ios::in (to read a file), ios::out (to write a file), ios::ate(to append) and ios::binary (binary format).

The following program segment shows how a random access file is opened for both reading and
writing.
#include<fstream>

i--itILJI
E

vt.

OOP with C++ Woking with Files
o"

ut$0tl

..^i i
--i ^ / \v 9Ig l(olll U

{
€cl-raim f i Ia.

!4fv,

fila nnan/fnama iac..in I iac..ni11. linc..rl-alinc..hinrrrr\.vyvlr\|rvv|!v9..qgv|!v9..p1lLgLf|,

)

It is essential to open a random access file with the above mode of access in order to perform
read, wdte and append. The file should be declared, as a binary status as the data members of a class
is stored in a binary format.

The fstream inherits the following member functions in order to move the file pointer in and
around the data base.

ios::beg (moves the file pointer from the beginning of the file), ios::cur (moves the file pointer
from the culrent file pointer position) and ios::end (moves the file pointer from the end of the file).

seekgQ, seekp0 , tellg0 and tellp0 member functions are also used to process a random access

file.
For examplet The following program segment shows

random access file.
#include<fstream>

void main ()

t
fstream infile

the positioning of the file operation for a

infi Ia <aaLaIAk,rrr! ars. oss^v \:v t
i nfi'lo eooltc/4O. u!vJ\)J \ fv,

l^al1^ ^^^1--lAr1r! f rc. Dvs^9 \ v t

infile.seekg(0);
inf i Ia coalzn/-l

hrrl- o

]

/ / nal a hrzt-a nrrml.'ar A A/ / 9VVV !y LE rrurl{Ug! :V
'i nq. .l^rea) : / /<arqg 49pvyt I

r^^..^*r\. ,, -^to endIvD..sllu,, t / / Vv
/ / .:,af n thc stert of
inc.nrrr\. // lh6 F41^rVD.9UI ,/, I I LIIE IIIE

the above
of f1Ie

the file
nl- li c mnrradE9L back end by one

13. Updating a File: Random Access
Updating is a routine task in the maintenance of any da,ta file. The updation would include one or

more of the following tasks:
o Displaying the contents of a file
r Modifying an existing item
o Adding a new item
o Deleting an existing item

These actions require the file pointers to move to a particular location that corresponds to the
item/ object under consideration. This can be easily implemented if the file contains a collection of
items/ objects of equal lengths. In such cases, the size of each object can be obtained using the
statement.

o"
ut8t0fl OAP with C++ Working with Files

int object_length : sizeof (object) ;
Then, the location of a desired object, say the mth object, may be obtained as follows:

int locati-on = m * object_length:
The location gives the byte number of the first byte of the mth object. Now, we can set the file

pointer to reach this byte with the help of seekgQ or seekp0.
We can also find out the total number of objects in a file using the object_length as follows:

int n : file_size/objecL_length;
' The file-size can be obtained using the function tellg0 or tellp0 when the file pointer is located

at the end of the file.
Program illustrates how some of the task described above are carried out. The progam uses the

"STOCK.DAT'file which is already created for five items and performs the following operations on
the file:
i. Adds a new item to the file. ii. Modifies the details of an item.
iii. Displays the contents of the file.

lnclude <i-o stream. h>
#include<fstream. h>
#1nc1ude<iomanlp. h>
cl-ass INVENTORY
{

ahrr nrma l-l A I 'fru.rrvLrvtt

int code;
f l nrl- ^^ci

.
vvv 9,

public:
void getdata (void)
{

cout << "Enter name: tt;
cout << ttEnter code: " ,
cout << ttEnter cost: " i

)

void putdata (void)

t
cout << setw(1O) << name

<< setw(1O) << code
<< set preclsion (2)

<< endl;
]

J ; / / End of class definit.ion
i -r -^1-

/ \rtrL lLLdatr \,,

t
INVENTORY item;

inottrfi Io ecalrc/O i^c. .1'a6d\ .
\vrave..yeYt,

cout << ilCURRENT CONTENTS OF
while (i-noutflle.read((char *i
t

item.putdata () ;
)

cin >> name;
cin >> code;
cJ-n >> cost;

/ / ^^ +^ -!-e+/ / vv Lv DLdrL

THE STOCK" << r'\n";
. rr^- -r-^-c,.i1-om\\\c !LEIIL/ DIZSUI \-__..., ,,

<< setw(1O) << cost

fstream inoutfile; / / inpuL/ output stream
inoutfile.open(nSTOCK.DATw, ios::ate I ios:: in I ios::out

ios: :binary) ;

ffi OOP with C++ Working with Files

_l

o,
ut$otl

inoutfile. clear O ; / / Lurn of EOF flag

/* >>>>>>
cout << "\nADD AN ITEM\n"i
item.getdata () ;
char ch;
^t- ^^+/^L\.Llrr.99L \9rr./ t
inoutfile.write((char *) & item' sizeof(item);
// ni<hlarr l-ho annandor{ fiIc
/ / uLoyLqI

inoutfile.seekg(0); // So to the start
cout << trCONTENTS OF APPENDED FTLE \nr';
while(inoutfile.read((char *) & item, sizeof(item))

i
if am nrrl-rlaf :/1.

}Jqusquq \ / t

j
// trincl nrrmher of olrier:fs in t.he filetl

int last = inoutfile. tellg () ;
int n : last/sizeof(item);
cout << t'Number of ob jects = rr << n << u \n" i
/* >>>>>>
cout << "Enter object number to be updated \nt';
l -+ ^Li^^r.Jllu uuJsuLf
nin :: nFrianl- .

^.1- ^^f/^1^\.9lrr . Vs L \ ulr / t
int location = (object-1) * sizeof(item);
if (inoutfile. eof O)

inoutfile. clear O ;
inoutf i1e. seekp (location) i
cout << "Enter new values of the object \n";
i-tem. getdata O ;
^l - ^^r /^L\ .urrr. vsL \u]r,l ,
inoutfi-le.write((char *) & 1tem, sizeof(item)) << flush;
/* >>>>>>
innrrffilc.saekrr/fl\. //aa la i-hp Staftllrvuu!rrs.ossrlY\v/, t I Yv vv'L'v

cout <<TTCONTENTS OF UPDATED FILE \n" i
while(inoutfile.read((char *) & item, sizeof(item))

{
'if am nrrl-rl:f rl'1 .

l/qevquq \ / t

]
inoutfile
-^r..-- n.!guu!ft v,

I // una ot

^1^^^ / \ .. srvDs \ ,/ ,

main ErlE55

The output of program would be:

Current

AA

BB

cc
DD

XX

Contents of stock

11 100

22 200

300

400

900

33

44

99

o"
ur$0rl OOP with C++ Working with Files

Add an item
Enter name: YY
Enter code: 10

Enter cost: 101

Contents of appended file

AA 11 100

BB

cc
DD

XX

22

33

44

99

200

300

400

900

YY 10 101

Number of objects = 6
Total bytes in the files = 96
Enter object number to be updated
6
Enter new values of the object
Entetnanrc:ZZ
Enter code: 20
Enter cost: 201

Contents of updated file

AA 11 100

BB 22 200

cc 33 300

DD 44 400

xx 99 900

zz 20 201

We are using the fstream class to declare the file streams. The fstream class inherits two buffers,
one for input and another for output and synchronizes the movement of the file, both the pointers
move in tandem. Therefore, at any point of time, both the pointers point to the same byte.

Since we have to add new objects to the file as well as modify some of the existing objects, we
open the file using ios::ate option for input and output operations. Remember, the option ios::app
allows us to add data to the end of the file only. The ios::ate mode sets the file pointers at the end of
the file when opening it. We must therefore move the 'get' pointer to the beginning of the file using
the function seekgQ to read the existing contents of the file.

At the end of reading the current contents of the file, the program sets the EOF flag on. This
prevents any further reading from or writing to the file. The EOF flag is turned off by using the
function clear0, which allows access to the file once again.

After appending a new item, the program displays the contents of the appended file and also the
total number of objects in the file and the memory space occupied by them.

--l

p,
ffiffi oop

'oot'
c** ' t'vo*i'g t"h E/"" . ulfiit

To modify an object, we should reach to the first byte of that object. This is achieved using the

statements.
int location = (object-L) * sizeof(item);
inoutf ile. seekp (location) i

The program accepts the number and the new values of the object to be

Finally, the contents of the appended and modified file are displayed.
modified and updates it.

Remember, we are opening an existing file for reading and updating the

important that the data members ale of the same type and declafed in the

existing file. Since, the member functions are not stored, they can be different.

values. It is, therefore,
same order as in the

/,/ aran mrrkq f i Ia for raaclino/ / vvsrr rLrq!

/ / araa roqrr'liq f i 1a €nr ,.rrif inrl!rrs !v! w!t--...J

the use of the command-line arguments for supplying the file

| 4. Command Line Arguments
Like C, C++ also supports a mechanism to pass arguments or parameters to main when it begins

executing, i.e., at runtime.
These arguments are called as command line arguments because they are passed from the

command line during run time.

The main0 functions which we have been using up to now without any arguments can take two

arguments as shown below:
main(int argc, char *argv[]

)

The first afgument argc called as argument counter which is the number of arguments in the

command-line. The second argument argv called as argument vector is an array of char type pointers

that points to the command line arguments. The size of this array will be equal to the value of argc.

For example:For t1t".6sna1rd line
C> test marks results

The value of argc would be 3 and the argv would be an array of three pointers to strings as shown

below:
argvlO] + test
argv[l] -+ marks
aryvf2] + results

The first argument, i.e., argv[0] (or *argv) will always represent the command name that invokes

the program, i.e., program name. Command line arguments begin with argv[l]. If the number of
*gutnentr will be fixed, the count, argc, should always be checked. Here, the second and third

arguments, i.e., argv[l] (or *(argv+l)) and aryvl2l (or *(argv+2)) will be used as file names in the

file opening statement as shown below:

::
l"ttt:.

open (argv [1]) ;

outf ile. open (argv l,2l | ;

:::
Following program illustrates

names. The command line is
test POSIT NEGAT

O"
ut8t0i OOP with C++ Working with Files

The program creates two files called POSIT ans NEGAT using the cornmand line arguments and
a set of numbers stored in an array are written to these files. The positive nurnbers are written to the
POSIT file and the negative numbers are written to the file NEGAT. The program then displays the
contents of the files.

Program for Command.Line Arguments

#include<iostream. h>
#incl-ude<f stream. h>
#incLude<stdlib. h>
i nl- ma i n / i nl- rraa nl.rrr* ararr f | \

*..e g-Yv, slYv LJ /

{ i-nt. number t9l : { 1,2, -3 , -4, 5 , -6 ,'7 , -8, -9) ;
if (argc !:3)

{ cout ((rrargc:tt << argc << tt\ntti
cout << 'rError in arguments \n";
exit(1);)

ofstream foutl-, fouE2i
f outl . open (argv []. I) ;
if (fout1. fail O)

{ cout << 'rCould not open the file'r << argv
exit(1);)

fout2.open(argvt2l);
:c tc---L. E-i r /)

)f ! (!9uLz.IcraI \
{ cout (< "CouLd not open the filer' << argv

exit (1) ;)
for (int i=0; i<9 ; i++)

{ if(numberIi] > 0)
foutl << numberlil

e1 se
fout2 << number[i]

f^,.+1 ^t^^^/\.!VqLl.9Mg \,/ ,

fouE2. close O ;
ifstream fin;
char ch;
for(i:1; i<argc; i++;
{ fin. open (argv iil) ;

cout << I'Contents of 'f << argvIi] << "\n";
do
{ fin ccflchl(! e \vrrl

cout << ch;
]
whife (fin) ;
cout << " \n\ntt i
€t- ^1^^^/\.! rrr . vtvD9 \ , t

)

return 0;

: //read a rralueal

/ /rli cnl:rli I

t1l << "\n"i

l2l << "\n";

POSIT file

NEGAT file

ffi OOP with C++ WoKng with Files
O"

ur$0i

0utput
Contents of POSft
r257
Contents of NEGAT

-34-6-8-9

Solved Programs

'iigF$.fiff
*ffi$$ffifl$**+r*
-

-

f-fifffffi $ uffi*#
.f$ug*f#*fifi****u$

$i*'H[i

Or
ut$0rl OOP with C++ Woking with Files

-ffi
=.8fi[#$iil;f

fi=-'[+i,ijiIffi

H

t1ttt
"uuttt'n

$*8ffi$i[ffim*++

$$ffilffi*uiillti""' "' ""t"litolii*li
8ffi'.?,H$fffi ,,il-',"ttj'u "#r'it'liiit.oiiiiiiig'f;t$'$*'tt$ffi .' "'-

o
OOP with C++ WoNng with Files

L)/O
util0tl

ililitiff

iiil

,ii'
,:rll

o"
ur$0tl OOP with C++ Working with Files

ffi#;i*#irie*

#,
a: file name, to be',copie'd :?, \nt';

;***, irn;;

oi """*i* a '6,liu i,l',

ar':,f,i.Le r\r.*i';'ci
,, aj,::,

ffiffi OOP with C++ Working with Files
o"

utSl0tl

!'qtu1"+;if;r,f.
*rFffi : 143 f k€ . ; : -{ +

u.J; ';jlii*i ii;n' 'r
' "'-,''

i' r'--"i1.-'ir-fifi
-ru'igi*i*,,ffi

},ii "it#';i'*;i
,ffitt*ia

,

t ;tttf fi ','..','
"',.,.',1',,

i. ii'lii""' l.'r

**r;'oiffiii*r*ili.-ir1'
; "r-' i -''iiir i, ii;rt,,r*"tt:'it

ii
-.+ii-o--+"uuffi'"-o',-'a.a"' -'

ffit'. "rt"fffi
*tilt*lf*tt i; .-fi .-i,,,,.,,,,i;-,.t

..'i-ri'r.i"'.fi"ri..i.t.ii.ii"
t"rii.f;'':.'**ril;ir#ir'n ,' ., ri,'."r,,'o'- "'''-"'"rfi''i" r

+tfit*l,tiffi :ff i"*ii"''r4*+"
jii 'i'ti;"i.6""tii'i

i-tl*4=i-i+ins';'''+'.#r'ol,t*..'.oe.s).i].]]':;.;.'''.'il.i;.'..'''....n,''.'..ji...j.j'.i....l..'
.o#;i*1';ir$;^iiffi ffi lui*'g'g11{11 'ln*" ',,=t"'"'i'ii'i

r:$F $i:t*l*ffi
ill{ *}ffi rffi-'if;Tiffi$hat.

'
ts ,,1iour' opt,iol:!'i

Or
ud0n OOP with C++ Working with Files

-f"'#ffffii;'
;,.; *;*or("." .< rrusrr) i-*
4

"Wl$,a.p.rpgram
to read the obove file. Create new frIes such as. Admda[',$4|,;do'tu

.ecoor.{jng,, :to-'.t[di

ffi OOP with C++ Working with Files
o,

urfl0tl

frT!ffi1 *ili
n .

"n
,f,fii,Ft't h-e $na r;l.l;:ffiffiof Jii;i";

o t,lii#*1?ffi
u'***t't,'',.',' J*ro "irae

oi remp),',,''"1",i'1"o "iil:iirff
*r&=.,i'f.i'#p.i.i*i,rt.i.ifigr1f.or--lrt'':".++,-Y-i,lv.{'vr,'i,t.,i',1,1,,,'ir,!,',.t.,i.-i.i"iri ',I

,';if i*#:j,f' ffi j,i*ry;*atuahnifi ii'i1'Liri"N-;ui:fi '
i
i.g,r'oril'i'e ".*irte't'tid1i34,.+'), lefipt;"iieoifempi'l;'',.,'-.,.', t...r'i,,,..:i'ifli.'iji

:"1.j*..r:...1.:i;;.'..''...'1...i..i.;rii;'..'.l.'.i.'].''.':..'i''i'.'..:'.l.il.:''''l.i|]1j]

,ll''itti:-Jl"**."ntitt.io6r" ,*'y.t'e er'tett"*arttu*p .,,-"'','L'.',r. t"":fl1i.flioii
}'j.i'll-+..!.*'+=..:'i'':''"*il.)'.*'.i'''...ii'.':.'.l''qq]:.yj?:.9l+fi9.g5'\Ei:'y.:l{.'.'.''1.'.'....:'..l.'|i.'.ji.|il

$n

s;

$*ffiu'ffi**;*ii*r;1,
-'";

Ji:i j'5"HTfn':;1r1-?J.'*' i,,,., ; u,
1,,,, 1r

"1,'r
r r i

""*
{
"r,,-iffi:*'.;;iaest',txt'1r'''t rif"'

"''
i out) ;'17wr it:'nv',.o$!,f.

".F..t.i ?:*':F ti S l "ntoxt'
ch a r a c r e

".
n11- 41'5'"1,tfl

''
o'

o.olg

O"
util0rl OOP with C++ Working with Files

-]

';illiili**ffi0il i,*# *,i"'"ttfiht*}T '' "i - i
'i'l 4.'.ff tti:;*:*l'ol**"1*:.;*...***,.,

n

ExeRcrsEs
Programming Exercises

1. Write a program in C++ to read a file and to

i. Display the contents of the file on to the screen,

ii. Display the number of characters and

iii. The number of lines in the file.

2.

J.

4.

Write a program in C++ to read a file and to display the contents of the file.

Write a program in C++ to merge two files into a one file heading.

Write a program in C++ to read students record such as name, sex, roll number, height and

weight from the specified file and to display in a sorted order (name is the key for sorting).

There are 100 records present in a file with each record containing a 6-character item code, a

Z0-character item name and an integer quantity. Write a program to read these records, arrange

them in the ascending order and write them in the same file overwriting the earlier records.

OOP with C++
o,

utt|0tlWorking with Files

Write a C++ program that compares two text files and print the lines where they first differ.
The program reads one line each from two files until a differing line is found or one of the
files is exhausted, in which case the line read from the other file is the first differing line. If
both files are exhausted simultaneously and no differing line has been found, the two files are
identical. The program must take into account that two files may be the same in the text, but
only the number of spaces or blanks on a line are different. Therefore, each line must be
squeezed to eliminate blanks or spaces before they are compared. This method will give a true
comparison of two files.

to
#p[:#l;ffiH#{Hffi
',,,..B-,,. tru .' 'r 'i'tc..'.ilffu;*i-
'

", i+o*;Hffi ,*i *"*0""1"'':
ErnP asat'.'"''.';fu*l;;fiffi

. , , rr.dar respe,-c1ivel|, ro'srore r-..'r*.!f;;T:t1Ji1##,#i:1;i
3.' wrire,u prggru* **,u, *9u rne'rcir.rite,ano r@*,*jflfiffffffi

afid copy the contentsin riew tte nmo Oispia5r tnana.af n

--,
n1'#1Jiffi!f$r' ""ry,'

teltp$in&-U- *****ffi

Or
In,6tunftldd

ut8t01l

Tem lote

l. lntroduction
The template is one of C++'s most sophisticated and high powered

features. Templates are a way of making your classes or functions more

abstract by letting you define the behavior of class or function without
actually knowing what datatype will be handled by the operations of a
class or function.

In essence, this is what known as generic programming; this term is a useful way to think about

templates because it helps the programmer to remind that a template class or function does not
depend on the datatype (or types) it deals with. Templates can be used in conjunction with abstract

datatypes in order to allow them to handle any type of data.

Templates are very useful for implementing generic constructs like vectors, stacks, lists, queues

which can be used with any arbitrary type. C++ templates provide a way to re-use source code as

opposed to inheritance and composition which provide a way to re-use object code.

C++ provides two kinds of templates: Function Templates and Class Templates.

The templates declared for functions are called as Function Templates and the templates those are

declared for classes are called as class templates.

ll r 1

o"
UFION

OOP with C++
o"

utfl0tlTemplate

2. Generic Functions
i. Generic Functions define the general set of operations that will be applied to various data

types.

ii. The specific datatype the function will operate upon is passed to it as a parameter.

iii. The compiler will automatically generate the correct specific code for the type of data, i.i:.,
actually used when the function is called.

iv. A generic function can be thought of as a function that "overloads itself'.
v. A specific instance of a generic function (i.e., compiler-generated for a specific data type) is

called a generated function.

vi. When you create a generic function, you are creating a function that can automatically
overload itself.

Generic functions are created using the keyword template.

Syntax
r^**r r -^^ h:f A].\znA\ r6f rlrh +t,na €rrna nrma /-Leiflp.l_dLe<c_Ldss u*_*-ry_. .._Lype Iunc_name(argumencs)
{

/ /body
)

of
templ-ate<typename DataType> return_type func_name (arguments)

{

/ /bodY
)

Note: The only difference between both these prototypes is the use of keyword class or typename, its
use is indistinct since both expressions have exactly the same meaning and behave exactly the
same way.

The Datatype is a placeholder name for a data type used by the function. The syntax defines the
template of a function implementation and the compiler will automatically fill the correct data type
wherever the DataType placeholder appears.

The keyword class means the parameter can be of any type. It can even be a class.

Let us assume a small example for Add function. If the requirement is to use this Add function
for both integer and float, then two functions are to be created for each of the dat"a type
(overloading).

int Add(int a,int b)
{ return a+b; i / /funcLton Without C++ template
float Add(f1oat a, floal b)
{ return a+b; } / /funcLton Without C++ template

If there are some more data types to be handled, more functions should be added. Hence, writing
separate funciion for each data type will end up with 4 to 5 different fuhctions, which can be
complicated for maintenance.

But if we use a C++ function template, the whole process is reduced to a single C++ function
template. The following will be the code fragment for Add function.

O"
ut$0i OOP with C++ Template

template <cl-ass T>
T Add (T a, T b) / /C++ f unction temo l are sarnpf s
{ return a + b; }

This C++ function lemplate definition will be
function, the compiler generates an Add function

of the
float is

called it generates float type and so on.

Thus a function template is used in
different data types.

Consider another example of function template:

enough. Now with the integer version
compatible for integer data type and if

such situation where we have to use same function for

F:it
lH-: Program for template
#include<iostream>
using standard stdi
template<class T>
T GetMax(T a, T b)
{ T result;

resul-t = (a > b)? a : b;
return (resul-t) i

)
int main O t

int. i:5,)=6, k;
long I=10, m:5, n;
k:GetMax<1nt> (i, l) ;
n:GetMax<long> (1, m) ;
cout << k << endli
cout << n << endl;
return 0;

\ / / end of main m
0utput

6
l0
In the above example, we used the function GetMax0 with arguments of type int and long

having written a single implementation of the function. That is to say, we have written a function
template and called it with two different patterns.

In GetMaxO template function the type T can be used to declare new objects:
T result;

result is an object of type T, like a and b, i.e., it is to say, of the type that we enclose between
angle-brackets <> when calling our template function.

In this case the generic T type is used as a piuameter for function GetMax the compiler can find
out automatically which data type is passed to it without having to specify it with patterns <inb or
<long>. So we could have written:
ini- i -i.

GetMax (L, j) ;

OOPwith C++

since both i and j afe of type int the compiler would assume automatically that the wished

function is for type int. This implicit method is more usual and would produce the same result:

tF:il
ILJI

-/,/ Fttnat- inn f omnl:f e
/ | evr$r4s ev

include< ios tream>
uslng namespace std;
template <class T>
T GetMax(T a' T b)
{ return (a>b?a:b);
j-nt main O t

int i=5 '):6, ki
long 1:10, m:5' ni
k:GetMax(1,j);
n=GetMax(1,m) i
cout << k << endl;
cout << n << endl;
return 0;

]

II

ILJI
E

Output
6
l0
In this case, within function main0 we called our template function GetMaxQ without explicitly

specifying the type between angle-brackets <>. The compiler automatically determines what type is

needed on each call.

Because our template function includes only one data type (ctass T) and both arguments it admits

are both of that same type, we cannot call our template function with two objects of different types

as parameters:
inf i '

long 1;
k = GetMax (i,1) ;

" This would be inconect, since our function waits for two arguments of the same type (or class).

3. A Function with Two Generic Data Types

More than one generic data type can be defined in the template statement using a cornma

separated list.

Syntax

template<c1ass TL, cLass T2>
ratrrrn i\rha frrnglign_name (afgUmentS.r_vfrv

!
t

/ /P.adtt nf f rrnctign/ r DveI

9! uYPs tL, LLr .)

O"
utiloi OOP with C++ Template

For example
templ-ate<cl-ass T, class U>

T GetMin(T a, U b)
{

return (a<b?a:b) ;
]

In this case, our template function GetMin0 admits two parameters of different types and returns
an object of the same type as the first parameter (T) that is passed. For example: After that
declaration we could call the function bv writine:
int i, j;
long 1;
i : GetMin<int, long> (j, I) ;

or simply
i: GetMln(j,1);

even though j and I are of different types.

Following program demonstrates the use of a Function Template with two generic data types:

E]','-g
pes

include< ios tream>
using namespace std;

template<cIass T, cl-ass U>
int GetMin(T a, U b) {

return (a<b?a: b) ;
)

1nt main ()
t

'inf i ;-1 n.rrru rr)-Lwl
long J-=3444;
l=GetMin(j,1);
cout<<1;

0utput
10

4. Explicitly Overloading a Generic Function
Although a generic function "overloads itself " you can still manually overload it explicitly.

If you overload a generic function, that overloaded function overrides (or hides) the generic
function only relative to that specific datatype version.

Hence you can accommodate exception for which the general algorithm provided in the generic
function needs to do something slightly different.

ffi OOP with C++ Template
o,

utst0rl

i-n
tLJl

-$.i *

us r-

tem
{

P temp;
LemP=3;
a=b;
b=temp;
cout<< 'rTnside template swap argument \nrr;

l
/ / tne following function overrldes the generaf version of swapargs ()

/ /€ar i nl-anarc

void swapargs(int &a, int &b)
{

i6t t^n.^.IIIU lsrllvt
temP:a;
a:b;
b=temp;
cout<< "\n fnside swapargs integer speclalizatj-onwi

rttaf rr [,,
)
int
{

Program for expllcltly overloadlng
clude<iostream>
ng namespace std;
plate<c1ass p> void swaPargs

int i:30, l=40;
double P:20.5 ' q:30 .1 ;
char a: txt, b: 'z'i
cout << "Original i,j."
cout << "ori-gi-naI prgl"
cout << "ori-ginal a, b: rl

swapargs (i, j) ; / /ca]-l-s
swapargs (p, q) ; / /cal-l-s
swapargs (a, b) ; / /cal-]-s
cout<< "Swapped i, j: " ((
cout<< ilSwapped p, er tt ((
cout<< ttSwapped arb:rr <<
return 0;

a template functlon

(p &a, p &b)

<<i<<
<<p<<
<<a<<
explicitly overloaded swapargs ()

i a cwenrra5 o
generic swapargs ()
i << ' | << j << t'\n";
p << t | << q << tt\nt';
a << ' | << b << u\ntt;

Output
Original ij : 30 40

Original p,q:205 30.7

Originala,b: x z

Inside swapargs integer specialization

Inside template swap argument

Inside template swap argument

Swapped ij : 40 30

Swapped p,q | 30.7 20.5

Swapped a,b: z x

O"
ul$otl OOP with C++ Template

When swapargs(ii) is called, it invokes the explicitly overloaded version of swapargs0 defined in
the program. Thus, the compiler does not generate this version of the generic swapargs0 function,
because the generic function is overridden by the explicit overloading.

Recently, a new-style syntax was introduced to denote the explicit specialization of a function. In
this method template keyword is used.

For example: The overloaded swapargs0 function from the above program will look like as
follows:
/ / ey using the template keyword
template <> void swapargs<int> (int &a, int eb)

i nl- l-amn.

temP=a;
a:b;
b=temp;
cout<< "Inside swapargs int specialization\n";

)

In the above code, the template<> construct is used to indicate specialization. The type of data for
which the specializatton is being created is placed inside the angli brackets following the function
name. This same syntax is used to specialize any type of generic function. The new-style approach is
better for a long term.

Explicit specialization of a template allows you to tailor a version of a generic function to
accommodate a unique situation perhaps to take advantage of some performance boost that applies to
only one type of data. However, as a general rule, if you need to have different versions of aiunction
for different data types, you should use overloaded functions rather than templates.

5. Overloading Function Templates
Sometimes, a function template just can't handle all of the possible instantiations that you might

want to do' Besides creating explicit, overloaded versions of a generic function, ttre temptite
specification itself can be overloaded. This is done by simply creating another version of the
template that differs from any other version in its parameter list.
Example

inc lude< ios tream>
using namespace std;
/ /Eirst version of func O template
template<classA> void func (A a)
i cout <<?'fnside func(A a) \n";
)

/,/ Second version of func () templ_ate
template<class A, class B> void func (A a, B b)
t

cout <<'r lnside func (A a, B b) \n";

int main ()

IUnC(l.UU);
func(100,
return 0i

ffi1aEi

5. Using Standard Parameters with Template
Functions

The standard parameters can be mixed with generic type parameters in a template function.

These non-generic parameters work just like they do with any other function. For example

tT--tl
ILJI:
/ /vsing Standard Parameters in a template function
inc lude< iostream>
using namespace std;
const int TABWIDTH:S;
/ /Di-spl-ay data at specified tab position
templateccl-ass P> void tabout (P data, int tab)
{

for (; tab, tab--)
for(int i=0; i<TABWIDTHii++)
cout<< ' 'i
cout<<data<<' \n" i

]
int main ()
I

tabout("This is a Sample Program",0)i
tabout (200' 1)

tabout ('P',21 i
tabout (10/3,31 i
return 0;

Output
This is a Sample Program

2N
P

J

ln the above program, the function tabout() displays its first argument at the tab position

requested by its Jecond argument, The first argument is a generic type, tabout() can be used to

display any-type of data. fne taU parameter is a standard, call-by-value parameter. The mixing of
g"n"ti" -C n*-generic parameters causes no trouble and is indeed, both common and useful.

/ /aal1e frrnc(A)
1000); //ca1Is func (A'B)

O"
0t$0i OOPwith C++ Template

Advantage of C++ Function Templates
C++ function templates can be used wherever the same functionality has to be performed with a

number of data types. Though very useful, lots of care should be taken to test the C++ template
functions during development. A well-written C++ template will go a long way in saving time for
progfammefs.

7. Generic Functions Restrictions
Generic functions are similar to overloaded functions except that they are more restrictive.

. All generated versions of a generic function need to perform the exact same action only the
data type may differ.

o lf you want to have different actions performed in different versions of a function, use
overloading instead.

Applying Generic Functlon: Generic sort
We know that, one of C++'s most useful feature is Generic Functions. Generic Functions can be

applied to all types of situations. Whenever you have a function that defines a generalizable
algorithm, you can make it into a template function. Once you have done so, you may use it with any
type of data without having to record it. A Generic Sort is an example which illustrates how easy it is
to take advantage of this powerful C++ feature.

) Generic Sort

Sorting of any type of data is exactly the type of operation for which generic functions were
designed. Let us consider an example of creating generic bubble sort. One of the characteristics of
this sort is that it is easy to understand and program. But as compared to other sorting techniques it is
less efficient.

The basic idea underlying the bubble sort is to pass through the file sequentially several times.
Each pass consists of comparing each element in the file with its successor (x[i] with x[i+l]) and
interchanging the two elements if they arc not in proper order.

The bubble0 function will sort any type of array. It is called with a pointer to the first element in
the arrav and the number of elements in the arrav.

lEilE!5 Program for a generlc bubble sort
include < iostream>
uslng namespace sEo;
template<cl-ass T> void bubble
(T *j-tems, / / pointer to array to be sorted

int count, / / number of items in array
{

OOP with C++ Template
o,

0r3r0i

regist.er int a, b;

for (a=1 i a<count; a++)

f or (b:count-1- ; b>=a ; b--)

if (items Ib-1] >items Ib]) {
/ /exchange elements
t=items tb-11 ;
items tb-11: items Ib] ;
items Ib] =t;

))
i -a -'-i - / \!ttu rLrqltt U

{

int iarray t 8I = { 25 5"7 48 3'7 12 92
double darraytSl=i7.5 10.5 4.'7 9.8

'inf i.1.rv t t

cout<<trThe Unsorted integer array is:";
for (i=0; i<8; i++)

cout<<iarray Ii] << ' ' i
cout<<endf i
cout<<rrThe Unsorted doubfe array is:"1
f or (i:0; i<8; i++)

cout<<darray Ii] << ' ' i
cout<<end1;
bubble (iarray,8) ;
bubble (darray,8) ;
cout<< "The sorted integer array j-s:";
for (i=0 t i<8 i i++)

cout<<iarray Ii] << ' ' i
cout<<endl;
cout<< "The sorted double array is: " I
for (i=0; i<8; i++)

cout<<darray Ii] << ' ' i
coul<<endl i
return 0;

)

86 33)
3.0 :-00.2 2.5 -0.9 i

mtE

Output

The Unsorted integer array is: 25 57 48 37 12 92 86 33

The Unsorted double array is:7.5 10.5 4.7 9.8 3.0 1,W.22.5 4.9
The sorted integer iuray is: 12 25 33 37 48 57 8692

The sorted double anay is:-O.9 2.53 4,7 7.5 9.8 10.5 100.2

In the above progtam, we create two affays one is integer and another is double. You may also try
to sort other types of data, including classes. The bubble0 function sorts each. Since it is a template
function and is automatically overloaded to accommodate the two different types of data. But in each
case, the compiler will create the right version of the function for you.

0.
sdotl Template

8. Generic Glasses
In addition to generic functions, you can also define a generic class. The created class defines all

the algorithms used by that class; however the actual type of data being manipulated will be
specified as a parameter when an object of that class is created.

Generic classes are useful when a class uses logic that can be generalized. A generic class can
perform the defined operation like maintaining a queue, on a linked list, for any typeof data.

Generic Classes are declared similar to generic functions.

The syntax for Generic Classes is as follows:

templateccfass DataType> cfass cl-ass_name{
/ /class declaration

Declaration of the C++ class template should start with the keyword template. The parameter
should be included inside angular brackets. The parameter inside the angular brackets can be either
the keyword class or typename. After that the DataType is a placeholder where the compiler will
automatically fill the correct datatype. This is followed by the class body declaration with the
member data and member functions.

Once you define a generic class, you create a specific instance of that class using the following
general form:

clas s_name<type> Ob j ect_name ;

Here, type is the type name of the data that the class will be operating upon.

All member functions of a generic class are automatically generic. No need to use the template
keyword while declaring them.

If needed, more than one generic data type can be declared using a comma-separated list
(for more dctail refer 9.9).

The desired data type is specified in angular brackets when an object of a generic class is
instantiated.

The compiler automatically creates the data type specific versions of all member functions and
variables for you.

For exarnple: The following is the declaration for a sample Queue class.

template<class T>class stack{
T st.[size] i // hoLds the stack
int top; / / index of top of stack
public:
stackO {t : 0; } / /iniLialize
void push (T obj); // push object on stack
T PoP () ; / /pop object from stack
I;

OOP with C++

OOP with C++ Template
Or

utdotl

Defining Member Functions
If the functions are defined outside the template class

the full template definition. Other conventions of writing
same as writing normal C++ functions.

body, they should always be defined with
the function in C++ class templates are the

rl=R
IL,JIX

/ /Dttc]n nl-r-iant nr/ / ! uDrr v!J99u vrl
template<class T>
{

i € /+^*--^i -^\1! \ LVP--Dr4s /

{
cout<<'t Stack
return i

]
el- f 1- an'l = nh.

J vv,

top+t i
)
/ /ear nhiani frnmtt-vy

template<class T>
{

if (top:=O)

i
cout<<'rEmpty
return 0;

]
uv-v ,
16+11rh cl- Il. nn'l .rr ev!vvY) |

)
int main ()

{
stack<char>S 1,
i nf i .
LL'v L,

stack
void stack<T>: :push (T obj)

anmnl6l-6 \hlr.

stack
T stack<T>::popo

stack. \ntt;

52, / /characLer stacks

Sl.push('a');
52.push ('x') ;
Sl.push ('b') ;
52 . push ('y') ;
Sl.push ('c') ;
S2.push ('z'l i
for (i : 0; i<3; i++) cou!<<"Pop S1: "<<S1.pop O (<"\n" I
for (i : 0; i<3; i++) cout<<'rPop 52: "<<S2.pop () <<"\n";
stack<int> is1, is2; //integer stacks
isl.push(1);
is2.push(5);
isl.push(2);
is2.push(6);
isl-.push(3);
is2.push(7);
for (i:0; i<3; 1++) cout<<"Pop S1:'r<<S1.pop O <<"\n";
for (i=0; 1<3; i++) cout<<"Pop S2: "<<S2.pop O <<"\n";
rairrrn O.

tLl&

o"
ur$0rl OOP with C++ Template

Consider another example,

templ-ate<c1ass T>
class pair {

T values [2] ;
public:

pair (T first, T second)
i val-ues IO]:first; values [1]:secondi
i

l.t,

The class that we have just defined serves to store two elements of any valid type.

For example: If we wanted to declare an object of this class to store two integer values of type int
with the values 115 and 36 we would write:

pair<int> myobject (115, 361 ;

this same class would also serve to create an object to store any other type:

pair<float> myfloats (3. O, 2.18) ,
The only member function has been defined inline within the class declaration. If we define a

function member outside the declaration we must always precede the definition with the prefix
template
|rilILJI: Program for class templateg
#include<iostream>
using namespace std;
template<cl-ass T>
n l r c c nr i r I

T valuel, value2;
public:

pair (T first, T second)
{valuel-:f irst ; value2:second; }

T getmaxo;);
templateccl-ass T>
T pair<T>: : getmax ()

{ T retval;
retval : (valuel>value2? value1:value2) ;

r6f rrrh roirr: I :

i
1nt main O {

pair <int> myobject (100, '15) ;
cout << myobject. getmax () ;
return 0;

)

Output
100

Note, how the definition of member function getmax begins:

template <class f)
t pair<t)::getmaxo

All Ts that appear are necessary because whenever you declare
member functions you have to follow a format similar to this (the second
T makes reference to the type retumed by the function, so this may vary).

Advantages of C++ Class Templates
i. One C++ Class Template can handle different types of parameters.

ii. Compiler generates classes for only the used types. If the template
is instantiated for int type, compiler generates only an int version
for the C++ template class.

iii. Templates reduce the effort on coding for different data types to a
single set of code.

iv. Testing and debugging efforts are reduced.

9. An example with two generic
data types

A class template can have more than one generic data type. Just declare
by the class in a comma-separated list within the template specification.

The syntax is as follows:

all the data types required

template<cIass T1, class T2,, class IZf
cl-ass classname
r
L

//Hdd\, ^i ^t.ss

The following program demonstrates the use of template class with two generic data types.

tT:jl
LH+J

=
P_rogram demonstratlng the use of class tomplate wlth two generlc data types

include< io s tream>
rrqi na h^macnr^6..*...-,F*-- std;
templatecclass T, class U>
class Test
{

Tai

public:
Test (T x/ U y)
{ a=x;

1i-,, .P-Y I

)
.,^{ j ji ^-t -., / \vvrq urDy.oy' ()

{

cout<<a<< ilandt <<b<< tt\r11 tr.
1
)

]

Or
urd0rl OOP with C++ Template

i nf m: i n 1 \

I
Taef<inf nhrr> nhil /1O ,vr\.

vuJL \Lvt tr L

Test<double, char*> obj2 (0 .25,
objl.displayO; //display

"TempJ-ates add power") ;
int, char
rlarrhl a nlrrr*

, errqrobj2. display O ;
raf rrrn O.!vestrr vt

/ /rl i cn l rrrr t sLvylsl

Output
10x
0.25 Templates add power

Two types of objects are used in the program, i.e., obj I uses int and char data and obj2 uses a
double and a character pointer. For both cases, the compiler automatically generates the appropriate
data and functions to accommodate the way the objects are created.

| 0. Using Non-type Arguments with Generic Class
In the template specification for a generic class you may also specify non-type arguments. That is

besides the template arguments that are preceded by the class or typename keywords which
represents type argument, we can also use other arguments such as an integer, enumeration, pointer,
reference, or pointer to member type. Non-type template argument/parameter must be constant at
compile time. Non-type template parameters can be qualified as const or volatile types. Floating
point values, string literals, Objects of class, struct or union type are not allowed as nontyp;
template parameters, although pointers to such objects are allowed. Arrays passed as non-type
template parameters are converted into pointers. Functions passed as non-type parameters are ffealed
as function pointers.

As an example consider a template that is used to contain sequences of elements.

ILJI4 Program for lllustrating the non-type template parameters
/,/ serrrran.A tcmnf ate
#include<iostream>
using namespace std;

/ / Here, int N is a non-type argument
tempJ-ate<c1ass T, int N>
class seguence {

T membLock INI ;
public:

void setmember(int x, T value);
T getmember(int x);

j;

templat.e <c1ass T, int N>
void sequence<T,N>::setmember(int x, T value) {

mg

OAP with C++ Template
Qr

ur3r0tl

memblock Ix]:value;
)

template <class T, int N>
T sequence<T, N>: : getmember (int x) {

return memblock [x] ;
]
int main O {

sequence<int, 5> myints ;
sequence<double, 5> myf Ioats ;
myints. setmember (0, 100) ;
myfloats. setnrember (3, 3 .I416) ,
cout << myints . getmember (O)

cout << myfloats . getmember (3)

return 0i
]

<< ,, \n,, i

0utput
100

3.14t6

I l. Using Default Arguments With Template classes
You can provide default arguments for template parameters in class templates but not in function

templates.
A defoult template-argument is a template-argurnent specified with the equal (=) sign followed

by the type name or value in a template-par.tmetet.
For example

template <cl-ass T : Iong> class A;

Here, the type long will be used if no other data type is specified when an object of type A is
instantiated.

As with default function arguments they should only be defined once the first time a class

template declaration'or definition is seen by the compiler and may be specified for any kind of
template-parameter (type, non-type, template). They shall not be specified in a function template

declaration or a function template definition, nor in the template-parameter-list of the definition of a
member of a class template.

Once you introduce a default argument all the subsequent template parameters must also have

defaults.
You can choose to provide defaults for all arguments but you must use an empty set of brackets

when declaring an instance so that the compiler knows that a class template is involved:
template<cl-ass T: Int size-t N = I0O> // BoLh default
class Stack {

T data [N] ; / / Fixed caPacitY is N
^i -^ + ^^rthf .
D!49_U UVUflU,

public:
void push(const T& t);
/ / Etc.

O"
utd0tl OOP with C++

Ii
Stack<> mystack i / / Same as Stack<int 100>

When declaring a template class object with default arguments, omit the arguments to accept the
default argument. If there iue no non-default arguments, do not omit the empty angle brackets. A
template that is multiply declared cannot specify a default argument more than once. The following
code demonsffates an effor: For example
template<cfass T : long> class A;
tempJ-ate<class T: fong> class A { /* x/ }; // Generates Error

In the following example, an ,uray class template is defined with a default type int for the array
element and a default value for the template parameter specifying the size.

ir-:il
t!l

4* Program for default template arguments
inc lude< ios tream>
using namespace stdp
template<cLass T : intr int size : 10> class Array
{ T* array;
nrrl-r'l i n.-

Array ()

{ arraY = new T[slze];
memset (arrayr 0, size * sizeof (T)) ;)

T& operator[] (int i)
{ return *(array + i); }

const int LengthO { return sLze; }
rraiA nrin+ /\vvfu l/!rrrL\/

{for(inti:0;i<sizei1++){cout<<(*this)[i]<<''
cout << endl;));

main ()
// F.vn1 i.if I\/ <n6.i€r; fha famnla--^..r**Ee argument,s:
Array<char, 26> ac;
for(int i = 0; i < ac.LengthO; i++)
{ ac[i] : 'A' + ii]
.^ hri nr- / \ .

4.re \ / ,

/ / Acccnf f ha a.lar-..r! !___1^!^ -rdtlmanf e./ / nvuey! Lrrs us!qUIL LglllPrdLE dr\jurLrsrrLr r

Array<> a; // You must incLude the angle brackets.
for(int i = 0; i < a.LengthO; j-++1

{ alj-l = i*10; }

a. prlnt O ;
i [f

int
{

Output
AB C D EFGH IJ K LM NO P Q R S T U V W XY Z
0 102030405060708090
The use of default arguments especially default types adds

You can provide a default for the type of data most commonly
your classes to specialize them as needed.

versatility to your template classes.
used while still allowins the user of

ffi OOP with C++ Template
Or

ut3totl

,2. Template Parameters
The third type of parameter a template can accept is another class template. If you are going to

use a template type parameter itself as a template in your code the compiler needs to know that the
parameter is a template in the first place. The following example illustrates a template parameter:

Program for a template parameter
inc lude< ios tream>
using namespace std;
template<class T>
class Array I / / p, slmple expandable sequence

enum { INIT: l-0 l;
T* data;
ci za l- n:n:ai l----*-- *Y i
<iza I nnrrnf :

public:
Array () {

count : 0;
data = new T[capacity = INIT];

i
-ArrayO { delete tl data; }

void push-back(const T& t) {

if(count == capacity) {
/ / Grow underlying array
size-t newCaP : 2 * caPaci-tY;
T* newData = new T[newCap];
for(size-t i = 0; i < count; ++i)

newData Ii] = data Ii] ;
delete tl data;
data = newData;
caPacitY = newCaP;

]
dataIcount++] : t;

)
void pop-back O {

if(count > 0)
--^^!!nt-.9vq.ru,

)

T* begin0 { return datai }

T* endo { return data + counti i

template<cl-ass T template<cl-ass> class Seq>
class container {

Seq<T> seg;
public:

void append(const T& t) { seq.push-back(t);
T* begin0 { return seq.begino; }
T* end0 { return seq.end0; }

ini m:in1\ I
contalner<int Array> container;
container.append(1);
container . append (2) ;

o,
utdotl OOP with C++ Template

int* p : container.begino
while(p != container.endo

cout << *p++ << endl;

Irfl

The Array class template is a trivial sequence container. The Container template takes two
parameters: the type that it holds and a sequence data structure to do the holding. The following line
in the implementation of the Container class requires that we inform the compiler that Se{ is a
template:

Seq<T> seq;

If we hadn't declared Seq to be a template parameter the compiler would complain here that Seq
is not a template since we're using it as such. In main(), a container is instantiated to use an Arrav
to hold integers so Seq stands for Array in this example.

Note that, it is not necessary in this case to name the parameter for Seq inside Cont"in."t
declaration. The line in question is:
template<class T template<class> class Seq>

Although we could have written

template<cl-ass T template<class U> class Seq>

the parameter U is not needed anywhere. All that matters is that Seq is a class template that takes
a single type parameter. This is analogous to omitting the names of function parameters when they're
not needed such as when you overload the post-increment operator:
T nnar:tnrrr/inl- ' rr..-J i

The int here is merely a placeholder and so needs no name.

| 3. Template Specializatlons
The term specialization has a specific template-related meaning in C++. A template definition is

by its very nature a generalization because it describes a tamily of functions o, ilurr", in general
terms. When template arguments are supplied the result is a speciali zation of the template because it
detennines a unique instance out of the many possible instances of the family of functions or classes.
Consider the following definition of min() function template it is a generulization of a minimum-
finding function because the type of its parameters is not specified.
template<typename T> const T& min(const T& a const T& b) {return ((a < b) ? a : b);)

When you supply the type for the template parameter whether explicitly or implicitly via
argument deduction the resultant code generated by the compiler (for exarnple: min<in>()i is a
specialization of the template. The code generated is also considered an instaitiation of thetemplate
as are all code bodies generated by the template facility.

Explicit Specialization
An explicit specialization may be declared for a function template, a class template, a member of

a class template or a member template. An explicit. specialization declaration is inffoduced by

template<>.
fr-ltLJl

,K Trogramlllustratlng the speclallzatlon of a class template
inc l-ude< io stream>
using namespace std;
template<class T> class mYclass{
L A,

public:
myclass (T x) {

cout << "Inside generic mYclass\n";
a=xi

)
t getao
{return a; } };
/ / r.vn1 i ai t snec'ialization f or double./ / !^y4rv+u etsvv

templ-ate <> cl-ass myclasscdouble> t
double ai
public:

myclass (double x) {

cout<<"Inside myclass<double> specialization\n";
a=x*x;

l
int geta ()
J rol-rrrn a: l
(! v e s-

int main ()

{
myclass<int> i (20) i
cout<("Inteqer: " <<i.geta()
myclass<double>i (5 . 0) ;
cout<<'rDouble : "<<d. geta () << " \nI i
return O;

Output
Inside generic myclass

Integer:20
Inside myclass<double> specialization

Double: 25.0

The ,1emplate<>o' prefix tells the compiler that what follows is a specialization of a template'

The type for the specialization must appeaf in angle brackets immediately following the function

name a; it normally would in an explicitly specified call.

In the program, the line
template<> class myclasscdouble> {

fr:ilILJIs

O"
utU0rl OOP with C++ Template

tells the compiler that an explicit double specialization of myclass is being created. This same
synt&(is used for any type of class specialization. Explicit class specialization expands the utility of
generic classes because it lets you easily handle one or two special cases while allowing all others to
be automatically processed by the compiler. If you find that you are creating too many
specializations, you are probably better off not using a template class in the first place. Explicit
specializations tend to be more useful for class templates than for function templaies. When you
provide a full specialization for a class template though you may need to implement all the member
functions. This is because you are providing a separate class and client code may expect the
complete in erface to be implemented.

14. The Typename and Export Keywords
The two keywords typename and export are added to C++ recently. Both are related specifically

to templates and plays specialized roles in C++ programming. The typename and export keywords
are briefly explained below.

Typename Keyword
As we already know that we can use the typename keyword in place of the keyword class in

template parameter dec laration.

For example: template<class T> cl-ass xyz{};
could have been written as:

template<typename T> class xyzII;
these two definitions of xyz are considered equivalent since template parameters using class or

typename are interchangeable. Although the typename and class are synonymous at the start of the
template definition, but sometimes you need the typename to tell the compiler that a symbol in a
template represents a type name and not an object. For example; Consider the tempiate shown
below:
templ-ate<cl-ass T> class test {

void XO {
T..1/*D.

I

What does the T::Y*P mean in this code sample? Is this is a multiplication expression or is it
supposed to be a pointer declaration? Is T::Y a member or a type? You can solve these types of
questions by using typename.
templateccl-ass T> class test {

vold XO { typename T::y*p;
.))

The format is: typename T::Name someobject;

o"
ffi ooptirt c** ' r"tpt"," uKlii

Now the compiler knows T::Y is a type, not a member name. The export keyword can precede a

template declaration. It allows other files to use a template declared in a different file by specifying

only its declaration rather than duplicating its entire definitions,

Solved Programs
#fib-lii$i

, *,seriesd ttoht,values,and p'erfo$the foilqrying,o,perationslril

x**tll*tf;ffi
j'il . ro add two vector$

finiilEltffin'
f *..y;,,r,
p.ub:I.,iC r

Yl.*ffry,rt'",1*.:ofr,;''.'}
i#rini,

.,i.

;{H'.i..:#lfffi*
'"fiffi;i*#ffi-'-

II*Tfffi
,V1...'o...Xi;

'l;i$I; tJl r

{ttr*,o,
*', *igl. *iir- +; *'jrl,til.tii"fffi+iiijirffffi " "','-' r:i-i j' :'-

i- rrri+ 1-'i
:r: rii

ve$oi.$
;: 1. . .;. ,;.'.1',1t l, .1

i-i-l;ttlt.f',!i 't tr'',,,ti'i.t,i'-',-, . -. '', ,, - -i.,',tij",'. ,i.i '..,ir, "ri ' ', iii'.:-,'t,,1,-, ,i1'nr'i,ri
''...l.f96g1t+l.vE#-i.'...'''l'.'..'.l''..'li1'.'.:1...j';...''i.'''..f;.;.'.''11;i].]il;1'i;

;:iilftiititffi"tioffii
:fi'n "'. iiri' "i-,'','t

,'.tt r i ,,j

o"
util0tl OOP with C++ Template

2ii;,. . te.fi function templae tocalculati arm, * ci*fe"#ffi;;-* ; .

'ffi;;uru*;irF miur;"#
'1'l*afff;.vaL'b,-
'1r.'c,oul''15lAr'ea , o.f, ..eirc1,e**4<3 . 142

i,nt,'*1i".()','.' .', "' l

'i'{.it.'.,,.i.'.,ir,'. , .. ' ' . t , ,.:.. .
".

".,..!ffiiiii;fu-u; u.,*, .,

llfitfi*il

*raol.ul*ia*f us,i

ap as' data nembers. Writc, a, ma ' io"itioli, in.w.hfun. *.
,,'..t ,r,.lrcrsoh lobJect,airay. $tore n:values'in:,$qthiarrii;ianA.iCdl-,thb-"s r f.iinclo-n,ts-i#rto
,,,,', ,[1$!;, agnx, and also the. pefson obffi-a.rray+'.rh-ei ,o=Fject'srih$;j$rrbd,iht'

accordlngtoperronhamg '- 1' : ,.,.,.i ,,,",',..i'r i,,fl-jlr'':'.ri':i''';lif'lrlt;'iinffi.',1'Ii'

if*t+fti*
'*"*

h' " i '

,ffic1ude<string. h>

r"ilii'J;on
i:+.,,ilff;l;T*reot t i ,

i-+w
reaapar*n, ' ,, ,

'

jti.l f',i"ut<<n'\n
sori"i nn**

""'' "'lll'lliliTi' ;;;,l'rn!' -

'i

t;l
c1.n>>aSo;r'

',$tti oiipr*yij
c,ou t t <# \oWimb';'.i, ;,";;6;*|t

ffi OOPwith C++ Template
Or

ut$0tl

g*#iiffi

O"
ur$0i OOP with C++

i1"f,1;1{fji# a- +.si.*.i,ffi i ii'
+-+$$ilf,+i"$11Tj,,.[1ffi ji'ir'i;;'i*ffi

i+[i;i'****iin-*frflt{t*:ffi
*ll-*ll"-="..*ffittiifi'8"$:|'if',iffi..P,,iflfff;r*1,:lli,lfl ,"*tuon
i detq' . u,'t't'"'i,'"'-'iotlii

-

r+if-ttltllill*1 fi''ir=l'o't+u'lili*t++*U1*i*Xllln "tt'"'uu'itiii'i

''o
"""-**** ffi

,ffil*. pernon *ata,,te,,: \n{;:i :'f irtitlitiiiiitiitlffi
.-

-', -r..niilitiiiiil
l..Iff'''i ,,''r'' " "' ,', ' '-=t"'lioiliiitiixittiitfiiii+iu "

''##utur*tt$*u ''iiu"it
ltiuu

ExeRcrsEs
A. Review Questions

1.

2.

3.

4.

B.

What is a template? List the merits and demerits of using a template in C++,

Define a function template.

Explain how a function template is defined and declared in a program.

What is a class template?

Programming Exercise

Write a program in C++ to perform the following using the function template concepts:

a. to read a set ofintegers
b. to read a set of floating point numbers
c. to read a set of double members individually.

Find out the average of the nonnegative integers and also calculate the deviation of the
numbers.

Write a C++ program using a class template to read any five parameterized data type such as

float and integer and print the average.

OOP with C++
o"

ut$otl

3. Identify which of the following function template definitions are illegal.

i. template<class A, B>
void fun (A, B)
J T.t. . .),

ii. template<class A, class A>
void f un (A, A)
{. .};

iii. template<class A>
void fun (A, A)
{. .I;

iv. template<class T, typename R>
T fun (T, R)
{. .};

v. template<class A>
A fun(int *A)
{. .};

Find error if any, in the following code segment.

Template <cl-ass T>
T max(T, T)
L . . . lt

unsigned 1nt m;
i-nt main ()

{ max(m, 100)t }

4.

*fu
urst01l

tion Hqndlin

l. Introduction
We know that it is very rare that a program will work conectly first time. It might have some

errors. An error typically refers to a problem that exists in a program when it is written and
compiled. It could bi a logic error or ryntax enor. Logic error will result in incorrect r"*ltr. In this
case, the code is correct but the algorithm has an error. This type of error will only be found during
program testing or during design reviews of the program. Another type of error is a syntax error.
Typically, the compiler finds errors of this type and they are corrected during the coding of the
program.

We often come across some peculiar problems other than the logic or syntax error. They are
known as exceptions. Exceptions are errors or run-time anomalies that occur during the execution of
a pfogram.

They can be the result of unavailability of system resources, such as memory, file space or from
data dependent conditions such as division by zerc, or numerical overflow or access to an array
outside of its bounds. Such exceptions exist outside the normal functioning of the program and
require immediate handling by the program. ANSI C++ provides built-in language features to raise
and handle exceptions. These language features activate a run-time mechanism used to communicate
exceptions between two unrelated (often separately developed) portions of a C++ program.

One of the most powerful features of exception handling is that an effor can be thrown over
function boundaries.

This means that if one of the deepest functions on the stack has an elror, this error can propagate
up to the upper function if there is a trying-block of code there. This allows programmers to put the
error handling code in one place, such as the main-function of your program.

12o1
0.

0t$0tl

ffi OOP with C++ Exception Handling
Or

ut$0tl

Exception handling is a new feature added to ANSI C++ and it was not part of the original C++.
Today, almost all compilers sup'port this feature. C++ exception handling provides a type-safe, integrated
approach, for coping with the unusual predictable problems that arise while executing a prograrn

l. I Why Exception Handling?

Exceptions are anomalies that occur during the normal flow of a program and prevent it from
continuing. These anomalies--user, logic, or system erors--can be detected by a function. If the
detecting function cannot deal with the anomaly, it throws, an exception. A function that handles that
kind of exception catches it.

In C++, when an exception is thrown, it cannot be ignored--there must be some kind of
notification or termination of the program. If no user-provided exception handler is present, the
compiler provides a default mechanism to terminate the progfam.

1.2 Synchronous and Asynchronous Exceptions
Exceptions are of two kinds, namely synchronous exception and asynchronous exception.

i. Synchronous Exception Handling: Exception handling is designed to support only
synchronous exceptions, such as affay range checks. The term synchronous exception means
that exceptions can only be originated from throw expressions
The C++ standard supports synchronous exception handling with termination model.
Termination means that once an exception is thrown, control never returns to the throw point.
Asynchronous Exception Handling: These are caused by event that are beyond the control
of the program. Exception handling is not designed to directly handle asynchronous
exceptions such as keyboard intemrpts. However, exception handling can be made to work in
the presence of asynchronous events if care is taken. For instance, to make exception handling
work with signals, you can write a signal handler that sets a global variable, have another
routine that polls the value of that variable at regular intervals, and throws an exception when
the value changes.

2. Exception Mechanism
Exception handling is a mechanism that separates code that detects and

handles exceptional circumstances from the rest of your program. Note
that an exceptional circumstance is not necessarily an eIror.

When a function detects an exceptional situation, you represent this with an object. This object is
called an exception object. In order to deal with the exceptional situation you throw the exception.
This passes control, as well as the exception, to a designated block of code in a direct or indirect
caller of the function that threw the exception. This block of code is called a handler.In a handler,
you specify the types of exceptions that it may process. The C++ run time, together with the
generated code, will pass control to the first appropriate handler that is able to process the exception
thrown. When this happens, an exceptionis caught. A handler may rethrow an exception so it can be
caught by another handler.

o.
0til0rl OOP with C++ Exception Handting

So far we have handled error conditions by using the if statement to test some expressions and

then executing specific code to deal with the error. C++ Language provides a good mechanism to
tackle these conditions.

The exception mechanism uses three keywords, i,e., try, throw and catch.

Thc exception handling is done through the following steps:

i. Hit the exception. [n other words, find the problem.

ii. Throw the exception. It suggests, report the error.

iii. Catch the exception. It means, receive the error information.

iv. Handle the exception. Lastly, perform corrective measures against the problem.

2.a The try Block

A try block is a group of C++ statements, normally enclosed in braces { }, which may cause an

exception (i.e., an error). The general form of the try is as follows:
Ery
t

// statements
]

in which excepti-ons mav be thrown

When an exceptional circumstance arises within try block, an exception is thrown that transfers

the control to the exception handler. If no exception is thrown, the code continues normally and all
handlers are ignored. An exception is thrown by using the throw keyword from inside the try block.
Exception handlers are declared with the keyword catch, which must be placed immediately after the

try block.

A try block can contain any C++ statement such as expressions as well as declarations. A try
block introduces a local scope, and variables declared within a try block cannot be referred to outside

the try block, including within the catch clauses.

2.2 The throw Statement
The throw statement is used to throw an exception inside of a try block to a subsequent exception

handler. A throw statement is specified with:

o the keyword throw
o an assignment expression;

The throw statement is one of the following form:

throw(exception) i
throw exception;
throwi // used to rethrow an exceptlon

where exception is object used to transmit information about a problem. The object being thrown
can be Specific object or Anonymous object.

OOP with C++ Exception Handling
o"

utSr0rl

For example

The constant value 4 is thrown,

The value of the variable num is thrown.

The object str is thrown.

An anonymous string object with the string "Exception found!" is thrown.

The type of the exception is used to determine which catch block to execute. The exception is
passed as an argument to the catch block so that it can be used in handling the exception.

2.3 The catch Exception Handler
A catch block is a group of C++ statements that are used to handle a specific raised exception.

Catch blocks, or handlers, should be placed after each try block. A catch block is specified by:
o The keyword catch

r I catch expression, which corresponds to a specific type of exception that may be thrown by
the try block

r { group of statements, enclosed in braces { }, whose purpose is to handle the exception
For Example: A catch-block receiving char * exceptions:

catch (char *message)
{

//statements in whi-ch the thrown char * excepti-ons are handted
]

The generalform of the try and catch block are shown below:
t r\/ I*'2

throw Exception i / /Group of statemenLs which detects and throws
/ / and exception

) catch(type arg) // Catches exception

/ / Group of statements that handles the
exceptr-on

lmplementing Exception Handlers

Following steps are involved in implementing exception handlers:
When a function is called by many other functions, you should code it so an exception is
thrown whenever an enor is detected. The throw expression throws an object. This object is
used to identify the types of exceptions and to pass specific information about the exception
that has been thrown.

Or
ut$otl OOPwith C++ Exception Handling

ii. Use the try statement in a client program to anticipate exceptions. Precede function calls that
you anticipate may produce an exception with the keyword try and enclose the calls in braces.

iii. Code one or more catch blocks immediately after the try block. Each catch block identifies
what type or class of objects it is capable of catching. When an object is thrown by the
exception, this is what takes place:
. If the type of the object thrown by the exception matches the type of catch expression,

control passes to that catch block.
o If the type of object thrown by the exception does not match the first catch block,

subsequent catch blocks are searched for a matching type.
. If try blocks are nested, and there is no match, control passes from the innermost catch

block to the outermost catch block.
o If there is no match in any of the catch blocks, the program is normally terminated with

a call to the predefined function terminate0. By default, terminate0 calls abort0, which
destroys all remaining objects and exits from the program. This default behavior can be
changed by calling the set_terminate0 function.

iv. If no exception is thrown (that is no error occurs within the try block) during execution of the
statements iriside the try block, the catch clauses that follow the try block are not executed
and control goes to the statement immediately after the catch block.

Figure 12.1 shows the execution of try and catch.

Flgure 12.1

Following is a simple example of a try block and its associated catch handler.

Control moves directly
to exception handler

Statements to deal with exceotion are executed

* Program for try.catch block
// exceptions
#incl-ude<iostream. h>
int main ()

t
char myarray [10] ;

OOPwith C++ Exception Handling
Or

ur3r0i

try
t

for(int n=0; n<:10; n++)
{

if (n>9) throw rrout of range" I
myarraY In] ='z' ;

l
]
catch(char * str)
{

cout << ttException:
l
return 0i

tt << str << endli

Output
Exception: Out of range
In this example, if within the n loop, n gets to be more than 9 an exception is thrown, since

myarray[n] would be in that case point to a non-trustworthy memory address. When throw is
executed, the try block finalizes right away and every object created within the try block is
destroyed. After that, the control is passed to the corresponding catch block (that is only executed in
these cases). Finally the program continues right after the catch block, in this case return 0;.

The syntax used by throw is similar to that of return. Only the parameter does not need to be

enclosed between parenthesis.

The catch block must go right after the try block without including any code line between them.
The parameter that catch accepts can be of any valid type. Even more, catch can be overloaded so

that it can accept different types as parameters. In that case the catch block executed is the one that

matches the type of the exception sent (the parameter of throw),
An exception can be thrown from outside the try block as long as it is thrown by a function that

is called from within try block.
The point at which the.throw is executed is called as the throw point. Once an exception is

thrown to the catch block control cannot return to the throw point. Following program illustrates how
a try block invokes a function that generates an exception.

tl:itlul r

-/ / Throwing an exception from a function outside the try block
include< ios tream>
using namespace std;
void Xtest(int test)
I / / €rtna|.ian
I tl

cout << "lnside Xtest:" << test << endl;
1f (test) throw test;

)
main ()
{

cout << ttStart\ntr;
try { // starL a try block
Xtest(0); // caII function inside try block
Xtest(1)i
Xtest(2);

o"
utd0i OOP with C++ Exception Handling

)
^-r^L / i -+ ; \uaLUtt \ rrrL f ,/

I / / r-af r-h hl or-k for i nt eveent i onsI tl

cout << "Caught exception
]
cout << ttEnci\nrt;
return 0;

)

Output
Start
Inside Xtest: 0
Inside Xtest: 1

Caught exception I
End
The try block can be localized to the function. In this case, each time the function is entered, the

exception handling relative to that function is reset. For example: Consider the following progfam:

tritg

// Try-catch can be l-ocalized to the function.
#include<iostream>
using namespace std;
void Xtest (int test)

i /,/ function
cout << "Inside Xtest:" << test << endl;
i r\/
-'J

{ // trrr hlnck ig\ | | ell

1f (tesL) throw
)
catch(int i) { //

cout << "Caught
)

)

main ()

{
cout << ttStart\ntti
Xtest(0); // simply calL the function
Xtest(1);
Xtest (2) ;
cout << I'End\nr';
return 0;

now inside the .

tesE;

then also catch
. exceptionr' << i

funct ion

needs to be here
<< tt \ntt;

tmg

0utput
Start
Inside Xtest: 0
Inside Xtest: I
Caught exception 1

lnside Xtest: 2

OOP with C++ Exception Handling
Or

utSt0tl

Caught exception 2
End
Consider the output of the above two programs, i.e., output of the program when function within

try block and output of the program when try block within function: the dift'erence between them is

that when the try block is within the function after each exception, the function returns and when the

function is called again, the exception handling is reset.

) Catching Class Types

An exception can be of any type, including class types that you create. In real world programs,

most exceptions will be class types rather than builrin types.

The most common reason for defining a class type for an exception is to create an object that

describes the error that occurred.
Exception handler can use this information to process the error. The following example illusffates

this:

Program for using class type exception
incfude < ios tream>
#include<cstrlng>
using namespace std;
cl:qq taeJ. {

public:
char str [30] ;
int a;
tesLO {*str=O;a=0; }

test (char *s, int e)
t

/^r- -\.)LlUPy\DL!rDr,
a:e i

]
j;
int main ()

{

int i;
trY {

cout<< trEnter a positlve number:rt I
cin>>i;
if(i<0)

throw test("Entered number is not positivet"i);
]

r':tr-hltFsf e) { //c'.atc'.h an error\ueue e/ t /

cout<< e. str << tt : tt;
cout<<e . a<<tt \n tt ;
]
return Oi

) E]E

Output
Enter a positive number: -2
Entered number is not positive: -2

o"
utd0rl OOP with C++

3.

Exception Handling

In the above program, we have to enter a positive number. If we enter a negative number, an
object of the class test is created that describes the error. Thus test encapsulates information about
the error. This information is then used by the exception handler. In general, you will want to create
exception classes that will encapsulate information about an error to enable the exception handler to
respond effectively.

Using Multiple Catch Statements
We can chain multiple handlers (catch expressions), each one with a different parameter type.

Only the handler that matches its type with the argument specified in the throw statement is
executed.

The general form of multiple catch statement is as follows:
try
{

/ /C++ statements
)

catch (typeL arg)
t

/ /catch b1ock1
)

catch (type2 arg)
{

/ /catch btock2

l

catch (typeN arg)
{

/ /caLch bLockN
)

Note that each catch statement responds only to its own type.
When an exception is thrown, the exception handler is searched in order for an appropriate match.

The first handler that yields a match is executed. After executing the handler, the conrbi goes to the first
statement after the last catch block for that ffy. When no match is found, the program is terminated.

It is possible that arguments of several catch statements match the type of an exception. In such
cases, the first handler that matches the exception type is executed.

ffi-
': Program for uslng mulilple catch statements

1 nclude< ios tream>
using namespace std;
void Ehandler(int i)
{

1- rrr {

throw i; //int
else

lltr::llt

o"
ffiffi ooP ttt c** ' et""ptu, Hrral,rg ulflii

throw'it; //char
el se

if/i=:-11
throw 3.14; / /floar

)
]
cetch/r.her r:) //catchl\ v.rsr

,{ cout << "Caught a character\n"; }

catch(int x) / /catchz
{ cout << 'rCaught an integer\ntr; }

catch (float n) //catch3
{ cout << "Caught a float\n"; }

int main ()

{
cout<< I'Mu1tiple Catch Statements\n"1
cout<< ui==1\n" i
Ehandler(1);
cout<< "1::Q\nn i
Ehandler (0) ;
cout<< ui=:-1\n" i
Ehandler (-1) ;
cout<<tr i::2\n";
Ehandler (2) ;
return 0;

] Ir']l
tL_llX

Output
Multiple Catch Statements

i==1

Caught an integer

i==0

Caught a character

i==-1

Caught a float
i--1

While executing a program, it will first execute the function Ehandler0 with i==1 so it will throw

i an int exception. This matches the type of the parameter i in catch2 and therefore catchz handler is

executed. Next the function Ehandler0 with i==0 is invoked.

This time, the function throws 'i', a character type exception and therefore the first handler is

executed. Lastly, the catch3 handler is executed when a float type exception is thrown.

Try block does not throw any exception, when the test0 is invoked with i==2 . Note that every

time only the handler, which catches the exception, is executed and all other handlers are bypassed.

When the try block does not throw any exceptions and it completes normal execution, control

passes to the first statement after the last catch handler associated with that try block.

O"
utd0i OOP with C++ Exception Handling

4. Catch.All Exception Handler
If we use an ellipsis (...) as the parameter of catch, that handler will catch any exception no matter

what the type of the throw exception is.
Its form is as follows:

catch (. .)

{
//process all exceptions

i
Here, the ellipsis matches any type of data.

* Program for catchlng allexcepilons
include<lostream>
using namespace std;
void Ehandler(int i)
{

try {
if(i=:O) throw i; // Lhrow j-nL
i-f (i:=1) throw 'i'i ,/,/ throw char
if (i::2) throw J- . 2; / / throw doubl_e

]
catch(...)
{ / / catch all exceptions

cout << rtCaught an exception\n";
)

]
int main ()
{

cout << "Begin\n";
Ehandler (2) ;
Ehandler(1);
Ehandl-er (0) ;
cout << ttEndttI
return 0;

)

0utput
Begin

Caught an exception
Caught an exception

Caught an exception

End

Note that all throws were caught by the one catch, i.e,, (catch(. . .)) statement no matter what the
type of it.

We can also use catch(. . .) as a default handler that catches all exceptions not caught by other
handlers if it is specified at last in the list of handlers. If we specified ii before other catch blocks
would prevent those blocks from catching exceptions.

i-rf]g

il:r1E
include< ios tream>
using namespace std;
void Ehandler(int i)
{ tryl

if(i==0) throw i; // rhrow int
if(i:=1) throw 'i'i // Ehrow char
if(j=:2) throw 1.2; // throw double

)
aai-nhlin+- v\\ rr. e ^ /

| / / catch an int excepti-on
cout << rf An f nteger is Caught tt << x << ' \n t ;

]
catch(...)

| / / catch all exceptions
cout << rrCaught an exception\nttl

]
)
i ^r --l - / \IIr L lil4f ll U

{ cout << rfBegin\nttl
Ehandler (0) ;
k h5hd tats r | \ .!rrsrrv4v! \!/,

Ehandler (2) ;
a^111 <a llEn.llt.

!1.s ,

return 0;
]

Output
Begin
An Integer is Caught
Caught an exception
Caught an exception
End
From this exirmple, we can conclude that using catch(...) as a default is a good way to catch all

exceptions that you don't want to handle explicitly.
Also, by catching all exceptions, you can prevent an unhandled exceptions from causing an

abnormal program termination.

5. Nesting Try-catch Blocks
It is also possible to nest try-catch blocks within more external try blocks. In these cases, we have

the possibility that an internal catch block forwards the exception to its external level. This is done
with the expression throw;with no arguments. For exampletry itry {

// code here
)
^^+^L/i^+ -\ I9qL9lrlfrtL rr,, 1

throw; / / throw with no arsuments

o"
0t$0i QOP with C++ Exception Handling

I
catch(...) {

cout << ttException occurredtrl
)

6. Exception Specifications
C++ allows a function declaration to specify exactly what set of exceptions the function can

throw via an exception specification. The exception specification is used as a suffix to a function

An exception specification is not part of a function's type. Both argument-list and type-list are
optional.

An empty exception specification (i.e., thow0) indicates that a function cannot throw any
exception. A function with no exception specification is capable of throwing any type of exception
and is the default function declarator. Each of the different types or classes that can be thrown by a
function is separated by a comma-operator in the type-list argument. A function that attempts to
throw an exception that is not listed in its exception specification will result in a call to the
unexpectedO function (which is explained later). The default behaviour of the unexpectedO is to call
abort0, which in tum causes abnormal program termination.

In type-list you cannot specify an incomplete type, a pointer or a reference to an incomplete type,
other than a pointer to void, optionally qualified with const and/or volatile. You cannot define a type
in an exception specification.

An exception specification may only appear at the end of a function declarator of a function,
pointer to function, reference to function, pointer to member function declaration, or pointer to
member function definition. An exception specification cannot appear in a typedef declaration. The
following declarations demonstrate this:

void fO throw(int);
void (*g) O throw(int);
rroid h/rrnid i/\ l-hrnr^r/int- \\.

\ vv4s r \/ \Ltrv) | t

// typedef int (*j) O throw(int); This is an error.
The compiler would not allow the last declaration, typedef int (*jX) throw(int).
A function can only be restricted in what types of exceptions it throws back to the try block that

called it. The restriction applies only when throwing an exception out of the function and not within it.
Following pro gratn illustrates exception specification.

Program for uslng exceptlon spsclflcatlon
include< ios tream>
using namespace stdl
/ / tnis function can only throw int and doub.l_e exceptions
void FThrowlntDouble(int i) throw(int, double)
I

IFTIILJI:

declarator and is of the
return-type function-name (arguments-list) throw(type-list)
{

// Function bodv

ffi OOP with C++ Exception Handling
Q"

u3r0i

if(i == 1) throw 12;
if(i := 2) throw 1234.2;

)

/ / throw no exception
void FThrowNone(int i) throwo
t

/ / these statements cannot be
if(i == 1) throw 12; //
it(i == 2) throw 1234.2; //

)

/ / th,row
/ / tlnrow

anE
double

thrown !

throw int
throw double

/ / throw any exceptlon
void FThrowAny(int i)
{

/ / fhcs,c statements can
if (i- :: 1) throw 12;
if(i == 2) throw 1234.2i

)
rraiA mrin/\v vrg rlrg4f r \ ,

t
try
{

FThrowIntDouble(1);
FThrowIntDouble(2);
FThrowAny (2) ;
FThrowNone(1);

l
nei- ch / i nt i I

{
cout << trcaught integer:rr << i << f'endl"1)

^-r^L /i^,,L1^ j\
9AU9rr \UVUpf g q/

i
cout << "caught double:rf << d << 'rendlt';)

The function FThrowlntDoubleQ can throw either int or double exceptions, but if an

made to throw any other type of exception abnormal program termination will occur
unexpected0 function will be called. FThrowNone0 cannot throw any exceptions and an

do so will result in an abnormal program termination.

FThrowAny0 illustrates that a function without an exception specification can throw any

exception.

7. Unexpected Exception
If the function throws an exception of a type not listed in the exception specification, or of a type

not derived from one of the listed types, the standard function unexpectedQ is called. The default
behavior for this function is to terminate the program.

The syntax is

void unexpectedO;

be thrown !

// throw int
/ / l-hraw darrhlc

// ok
// ok
// ok
/ / abnormal program termination

-

ILII=
attempt is
and the

attempt to

O"
uril0tl OOP with C++

IL-JI .:

Exception Handling

The unexpected$ function simply calls the other functions (i.e., by default terminate0) to actually
handle the error. However you can change the functions that are called by unexpected0 by using
set_unexpected0 fu nction.

set-unexPeGtedo

You can install your own handler or change the unexpected handler by calling set_unexpected.
To use set_unexpected(), you must include the header file <exception>.

hs is as shawn below.

Hete, newhandler is a pointer to the new unexpected handler. The function returns a pointer to the
old unexpected handler. Also, it returns the previous value of the unexpected() pointer so you can
save it and restore it later. The new unexpected handler must be of type unexpected_handler, which
is defined as follows:

typedef vold (*unexpected_handLer) () ;
This handler should take any actions necessary for unexpected exceptions, and then terminate

execution of the program. It can also throw exceptions of its own. However, it must not return to the
pro$am.

Here's an example that shows a simple use of unexpected specification.

Program for uslng unexpected speclllcatlon
/ / Basic exceptions
/ / Exception specifications & unexpected ()

include<except ion>
i-nc lude< ios tream>
i-nclude<cs tdl ib>
include< cstr ing>
using namespace std;
class Up { };
class Fit { i;
void gO;
void f(int i) throw(Up, Fit) {

swit.ch(i) {

case 1: throw Up () ;
case 2: throw fit () ;)

sO;)
// voLd g(7 {} // Version 1

void gO { throw 47; | // Verston 2

/ / can throw built-in types
void my_unexpected O t

cout << "unexpected exception thrownrr;
exit (1) ; l

inf m:in/) t
set_unexpected (my_unexpected) ;
// /innaroq ral-rrrn rr:lrro\
for (int i=1 ; i<=3; i++)

try i r(i);)
catch(Up u) {

cout << ftUp caughttr << endl;

unexpected-handler set-unexpected (unexpected_handler newhandler) throw () ;

OOP with C++ Exception Handling
0,

utd0i

I -^t^h | ts r I i I I

cout << t'Fit caught'r << endl;

The classes Up and Fit are created solely to throw as exceptions. Often exception classes will be
small, but sometimes they contain additional information so that the handlers can query them. f() is
a function that promises in its exception specificatioh to throw only exceptions of type Up and Fit,
and from looking at the function definition this seems possible. Version one of g(), called by f(),
doesn't throw any exceptions so this is true. But then someone changes g() so it throws exceptions
and the new g() is linked with f(). Now f() begins to throw a new exception, unknown to the
creator of f(). Thus the exception specification is violated. The my-unexpected() function has no
arguments or return value, following the proper form for a custom unexpected() function. It simply
prints a message so you can see it has been called, then exits the program. Your new unexpected()
function must not return (that is, you can write the code that way but it's an error). However, it can
throw another exception (you can even rethrow the same exception), or call exit() or abort(). If
unexpected() throws an exception, the search for the handler starts at the function call that threw the
unexpected exception. (This behavior is unique to unexpected().) In main(), the try block is within
a for loop so all the possibilities are exercised. Note that this is a way to achieve something like
resumption - nest the try block inside a for, while, do, or if and cause any exceptions to attempt to
repair the problem; then attempt the try block again. Only the Up and Fit exceptions are caught
because those are the only ones the prograrnmer of f() said would be thrown. Version two of g()
causes my_unexpected() to be called because f() then throws an int. (You can throw any type,
including a built-in type.) In the call to set_unexpected(), the return value is ignored, but it can also
be saved in a pointer to function and restored later.

8. Throwing an Exception from Handler
If a catch block cannot handle the particular exception it has caught, you can rethrow the

exception. The rethrow expression causes the originally thrown object to be rethrown. The rethrow
expression has following form:

throw; / / throw with no argument

This causes the current exception to be passed to the next outer trylcatch sequence. This allows
multiple handlers to manage the same exception. Any function called from within a catch block can
also re-throw exceptions. Re-thrown exception will not be re-caught by the same catch block, but
will propagate to the next higher level in the trylcatch hierarchy.

ma5* Program for exceptlon re-throwlng
i nclude<i os tream>
trci nn h^machaaa..*...--r--- sEqi
vold Ehandler O {
try
I f hrnr^r t'll7^1 d6md,,.(e..r vw

a:f ch lchar *eJ- rl
// fhrat^t: cJ-r'ina Is ver+.rY t

{ // inner-most handler
cout << "Caught string inside Ehandl-er\n";

O"
utilotl OOP with C++ Exception Handling

throw; / / re-Lhrow the same exception))
mainO { cout (("Begin\n";
try
{ EhandlerO; I // caLI function inside try

catch(char *str) { // next outer handler
cout << "Caught string inside main\n";)

cout << "End\n";
ral-rrrn O.

]

0utput
Begin
Caught string inside Ehandler
Caught sffing inside main
End

9. Uncaught Exception
If an exception is not caught by any catch statement because there is no catch statement with a

matching type, then it is said to be "uncaught" or "unhandled" exception. An uncaught exception
also occurs if a new exception is thrown before an existing exception reaches its handler - the most
corlmon reason for this is that the constructor for the exception object itself causes a new exception.
If an exception is uncaught, the special function terminate() is automatically called. Like
unexpected(), terminate is actually a pointer to a function. Its default value is the Standard C library
function abort(), which immediately exits the program with no calls to the normal termination
functions (which means that destructors for global and static objects might not be called). The
syntax is:

rrni r'l l-armi nafa i/ \ .
jr|g99 \, ,

No cleanups occur for an uncaught exception; that is, no destructors are called. If you don't wrap
your code (including, if necessary, all the code in main()) in a try block followed by handlers and
ending with a default handler (catch(...)) to catch all exceptions, then you will take your lump. An
uncaught exception should be thought of as a programming elror. In general, terminate0 is the
handler of last resort when no other handlers for an exception are available.

set_terminateo
You can install your own terminate() function using the standard set-terminate() function,

which returns a pointer to the terminate() function you are replacing, so you can restore it later if
you want. In addition, any terminate() handler you install must not return or throw an exception,
but instead must call some sort of program-termination function. If terminate() is called, it means
the problem is unrecoverable. Like unexpected(), the terminate() function pointer should never be
null. To change or install the terminate handler, use set_terminate0 shown below:
terminate-handler set_terminate (terminate_handler newhandler) throw () ;

Here, newhandler is a pointer to the new terminate handler. The function returns a pointer to the
old terminate handler. The new terminate handler must be of type terminate_handler, which is
defined like this:

OOP with C++ Exception Handling
0,

ur$oi

typedef void (*termi-nate_handler) () ;

The only thing that your terminate handler must do is stop program execution. It must
to the program or resume it in any way.

Like set-unexpected0 the set_terminateQ also require the header <exception>.
Here's an example showing the use of set_terminate(). Here, the return value is

restored so the terminate() function can be used to help isolate the section of code
uncaught exception is occurring.

m* Program illustrating the use of seuermlnateQ and uncaught exceptlons
/ / Vse of set_terminate () Also shows uncaught exceptions
inc lude<except ion>
inc lude< i- ostream>
incl-ude<cs tdl ib>
using namespace std;
void terminator ()

{ cout << rrItll be back!tf << endl;
abort O ;)

void (*old_terminate) o
:qai l- 6rmi nal-a /tarmi nri^r\ .

r.sev \ vv!rrrrrrsLv!, t

class Botch
{ public:

nlr<< E'rrrif I1.t),
rrniA €/\ Ivvrs !\/ t cout << "Botch::f()" << endl-;

throw FruitO;)

-BotchO { throw'c'; }};
{ ^+ *^i - / \ttr L Ilqrrr U
{ try

{ Botch b;
b.fO;] catch(...)

{ cout << "inside catch(...)'<< endl; }
)

The definition of old-terminate looks a bit confusing at first. It not only creates a pointer to a
function, but it initializes that pointer to the return value of set_terminate(). Even though you may
be familiar with seeing a semicolon right after a pointer-to-function definition, it's just another kind
of variable and may be initialized when it is defined. The class Botch not only throws an exception
inside f(), but also in its destructor. This is one of the situations that causes a call to terminate(), as
you can see in main(). Even though the exception handler says catch(...), which would seem to
catch everything and leave no cause for terminatc() to be called, terminate() is called anyway,
because in the process of cleaning up the objects on the stack to handle one exception, the Botch
destructor is called, and that generates a second exception, forcing a call to terminate(). Thus, a
destructor that throws an exception or causes one to be thrown is a design effor. The C++ exception
handling subsystem supplies one other a brand-new library function: uncaught-exceptionQ. Its
general form is as shown below:

booL uncaught_exception () ;

This function returns true if an exception
function returns false.

has been thrown but not yet caught. Once caught, the

not return

saved and
where the

O"
ut$0i OOPwith C++ Exception Handling

Solved Programs

OOP with C++ Exception Handling
O"

urfloi

u*g+*i#*g#+ #'$

ExeRctsEs
A. Review Questions
l.
2.

3.

4.
).
6.

7.

8.

9.

10.

B.

What is an exception?
How is an exception handled in C++?
What is a try block?
What is a catch statement?

What information can an exception contain?
When are exception objects created?

What does catch (...) mean?

What is an exception specification? When it is used?

When do we use multiple catch handlers?
Explain terminate and unexpected function.

Programming Exercises

Write a program containing a possible exception. Use a try block to throw an exception and
catch block to handle it properly.
Write a program, which illustrates the use of multiple catch statements.

Write a program using catch(. . .) handler.
Write a program for calculators which perform simple arithmetic operations using exception
handling mechanism.

(j"
s$il

l.

2.

J.

4.

-

Introduclion To Stondqrd
lole Libro

l. Introduction
The Standard Template Library (STL) is a general-purpose C++ library

and it is a collection of algorithms and data structures. The data structures
used in the algorithms are abstract in the sense that the algorithms can be
used on (practically) every data type. The algorithms can work on these
abstract data types due to the fact that they are template based algorithms.

STL was originated by Alexander Stepanov and Meng Lee. The STL,
based on a concept known as generic programming, is part of the standard ANSVISO C++ library.
The STL is implemented by means of the C++ template mechanism, hence its name. While some
aspects of the library are very complex, it can often be applied in a very straightforward way,
facilitating reuse of the sophisticated data structures and algorithms it contains.

The STL provides some nice features such as handling memory for you (no memory leaks), it is
also safer (no buffer overflow issues when using vectors or similar data structures).

All elements or components of the STL are defined in the standard namespace. Therefore, a
"using namespace std" or comparable directive is required unless it is preferred to specify the
required namespace explicitly.

The using namespace directive informs the compiler that we intend to use Standard C++ Library.

13 e'l
o,

utSt0tl

OOP with C++ lntroduction to Standard .

o"
ut$0tl

2. The STL Programming Model
The STL would not have been possible without the use of C++ templates; class and function

templates are used throughout the STL. Templates provide not only the efficiency needed for a
generic component library, but also make the library extensible. Templates allow the STL to work
with built-in types and user-defined types in a seamless way.

Templates are still a recent addition to C++ and many compiler vendors do not provide all of the

features as suggested in the April 1995 ANSI draft. The STL depends heavily on many of these

advanced features and, in some casss, relies on workarounds to accommodate the current generation

of compilers.

There are six components in the STL organization. Three components, in particular, can be

considered the core components of the library:

i. Containers arc data structures that manage a set of memory locations.

ii. Algorithms are computational procedures.

iii. Iterators provide a mechanism for traversing and examining the elements in a container.

An STL data structure or container, does not contain many member functions. STL containers

contain a minimal set of operations for creating, copying, and destroying the container along with
operations for adding and removing elements. You will not find container member functions for
examining the elements in a container or sorting them. Instead, algorithms have been decoupled from
the container and can only interact with a container via traversal by an iterator. This relationship is

explained in the figure 1 3. 1.

Figure 13.1: Containers, algorithms, and lterators form an orthogonal component space in the STL

This orthogonal structure is what brings the STL its power, flexibility, and extensibility.

Developers that implement new algorithms utilizing one of the STL iterators are guaranteed

that their algorithms will work with existing container types as well as those that have not yet

been developed.

The remaining three components of the STL are also fundamental to the library and contribute

to its flexibility and portability:

iv. Function objects encapsulate a function as an object.

v. Allocators encapsulate the memory model of the machine.

vi. Adaptors provide an existing component with a different interface.

Let's take a look at each of the STL components in a little more detail.

o"
urilorl OOP with C++ lntroduction to Standard . . .

3. Containers
Containers are STL objects that actually store data. They use certain basic properties of the

objects (ability to copy, etc.) but otherwise do not depend on the type of object they contain. STL
containers may contain pointers to objects, though in this case you will need to do a little extra work.
There are several different types of containers, which are grouped into three categories namely,
Sequence Container, Associative Container and Derived Containers or Container Adapters.

To give you a brief idea of the containers that are available, here is the hierarchy:

Flgure 13.2: Hlerarchy of three malor categorles of contalners

Following table l3.I describes the details of the containers defined by the STL as well as the
header file required to use each container.

Sequence
container

Container
adapters

priority_queue

Table 13.1

Sequential Containers

vector
A dynamic array of variables, structures or objects. Insertion /
deletion of element at the end and allows direct access to any
element.

<vector>
Random
access

list A linked list of variables, structures or objects, Insertion /
deletion of element anywhere. <list> Bidirectional

deque
A double-ended queue, it is an array which supports insertion i
removal of elements at beginning or end of array, lt allows
direct access to any element.

<deque>
Random
access

As soci ative Contai ne rs

set A set in which each element is unique, i.e., duplicate data is not
allowed. <set> Bidirectional

multiset A set in which each element is not necessarily unique, i.e.,
duplication allowed. <set> Bidirectional

map
A map stores unique key/value pairs. Each key value is
associated with only one value. <map> Bidirectional

multimap A multimap slores key/value pairs in which one key may be
associated with two or more values, i.e., duplicate keys allowed.

<map> Bidirectional

OOP with C++ lntroduction to Standard . . .

Or
ut$0ll

Derived Containers / Container Adapters / Sequence Adapters

stack A stack works in LIFO, i,e., Last In First Out manner <stack> No iterator

queue A queue works in FIFO, i,e., First In First Out manner <queue> No iterator

priority
queue

A priority queue. The element which is first out is always the
highest priority element

<queue> No iterator

Each container class defines a set of functions that may be used to manipulate its contents.

For example: A vector container defines functions for inserting and erasing an element and swapping

the contents of two vectors. A list includes functions for inserting, deleting and merging elements.

) Sequence Containers

A sequence is a container that stores a finite set of objects of the same type in a linear
organization. An array name is a sequence. You use one of the following three sequence types for a
particular application depending on its retrieval requirements.

Following are the three types of sequence containers:
i. vector: A vector is a sequence that you can access at random. Insertion/deletion of element is

fast at the end of the vector but it takes more time (i.e., slow) at the beginning or in the middle
of the vector because they involve shifting the remaining element to make room or to close the

deleted element space, Vector allows fast random access. It supports a dynamic array.

ii. list: A list is sequence that you can access bi-directionally, i.e., at both end. Insertion/deletion
of element is fast and we can insert/delete element anywhere, but provide slow sequential access.

iii. deque: A deque is like a vector, except that deque allows fast insertion/deletion at beginning
as well as at the end of the container. Insertion/deletion of the element in the middle takes

more time (i.e., slow). It allows fast random access.

) Associative Containers

Associative containers are a generalization of sequences. Sequences are indexed by integers;

where as associative containers can be indexed by any type.
Associative containers provide efficient retrieval of values based on keys. We can use associative

containers for large dynamic tables that you can search sequentially or at random. Associative
containers use tree-structures to store data rather than using contiguous affays or linked lists. These

structuressupport fast random retrievals and updates.

The set, multiset, map and multimap are called associative containers because they associate keys

with values.
i. set: Set allows you to add and delete elements, query for membership, and iterate through the set.

ii. multisets: Multisets are just like sets, except that you can have several copies of the same

element (these are often called bags),

iii. maps: Maps represent a mapping from one type (the key type) to another type (the value

tYPe)'
You can associate a value with a key, or find the value associated with a key, very efficiently;
you can also iterate through all the keys.

iv. multimaps: Multimaps are just like maps except that a key can be associated with several

values.

O"
ur$0rl OOP with C++ lntroduction to Standard . . .

The most important basic operations with associative containers are putting things in and in case
of set seeing if something is in the set. In case of a map you want to first see if a key is in the map
and if it exists you want the associated value for that key. There are many variations on this theme
but that's the fundamental concept.

) Container Adapters
Container adapters are created from the existing sequence containers. The derived containers do

not support the iterators and therefore we cannot use them for manipulating the data.

STL includes three container adapters: stack, queue and priority_queue, which can be
summarized as follows:

i. stack: A stack is a data structure, which supports pushdown, pop-up behaviour. The element
which is inserted (pushed) most recently is the only one that can be extracted. Extraction of
the logically topmost element pops that element from the stack removes it so that the element
inserted immediately before the popped element is now the next available element. The stack
template class supports two functions: push0 and pop0 to insert and extract elements in the
data structure.

ii. queue: A queue is a data structure wherein we can insert elements at the end and extract
elements from the beginning. The queue template class supports two functions: push0 and
pop0 to insert and extract elements in the data structure.

iii. priority-queue: A priority-queue is a data structure wherein we can insert elements at the
end and extract element that has the highest priority. The priority_queue template class
supports two functions: push0 and pop0 to insert and extract elements in the data structure.

3. I Constructing a Sequence Container
There are multiple constructors provided by each container class to create container objects. The

different constructors provide ways to specify the size of the container and initial values for its
elements.

Here are some of the most cornmon ways of construction of container, i.e., vector, list and deque.
vector /deque/1ist<type> name
vector,/deque/list<type> name (size)

. vector/deque/1ist<type> name(size, vaLue)

. vector/deque/list<type> name (myvector/mydeque/myJ_ist)
vector/deque/iist<type> name (first, Last)

Let's take a look at a simple example showing the various constructors.

l.
ii.
iii
iv

r=n
IL-JI:
#include<vector>
#include<deque>
#lncLude<11st>
include< s tr ing>

// Needed to use vectors
// Needed to use deques

// Needed to use lists

ffi OOP with C++ lntroduction to Standard . . .

o,
ut8toil

using namespace std;
1nt main O {

// t. Ctotttng .n rpPty contatnot
vector<int> v1; / /oeclare 1nt vector vl- of zero size
list<string> 11 ; / /Dec.l-are a l-ist of string type 11 of zero size
deque<float> dL; //Declare dqueue of float type d1 of zero size
// Z. Croatlng I contal.n r of tw ttzo uttng tbc drfrult valuo Cor

// AutJjl-ln ty6nc os tho dctault constsuctot Cot utos-daftnod
// tyecc such at claccct
vectorcinL> v2 (100);
/ / Creates a vector of 100 ints with initial values of 0

degue<j-nt> d2 (5),
/ / ^-^-r^- - A^^ue of 5 ints with initial values of 0// v!gaLsD q usY

// g. Cac.t.t . vcctot of cM stzo r.tth tpr,cJ,tl.d lnlttal v.tu.t
vector<int> v3 (100, -5) ;
/ / Creates a -vector of 100 integers with initial values of -5.

vectorcstring> v4 (4, ttdog") i
/ / Creates a vector containing 4

fist<string> L2 (5, "cat")

<f rinnq inii-ia1 izcd, tn ilrloclw
o ur rrrYo -"Y

/ / Creates a l1st containing 5 strings initialized to "cat". This
/ / al-l-ows for ef f icient del-et.ion and insertion of cats in the
/ / interior of the sequence.
// l. Czoates t v.ctoa by provtdLng ttart and and ttczatorc to anothor
//coaEalnot.
string sl, ("He1Io Worldrt) ;
vector<char> v5 (sl.beginO' sl.endO) ;
/ / f raaf as a rzer:tnr nnn1. ai n i nc ttHellO WOf ldtt/ / vvrreulrrrrrY

list<lnt> 13 (v3.beginO, v3.endO) ;
/ / Creates a list containing the elements of v3

deque<int> d3 (v3.beginO, v3.endO) ;
/ / .va;ra- : Aaa11p containino the eiements Of v3/ / w! Ea LeD 4 qeYus vvrl Le!1rlrrY elr

int numbers[5] = {9, 3, 2, 5, 6}i
vector<int> v6inumbers, numbers + 3);

/ / CreaLes a vector conLainingr the first three e-Iettents of Lhe array
numpers.
// S. Cteatec a contaln.t inl'tteltzcd frq anotheir eontalnez-

vector<int> v7 (v6) ; / / cteaLes a vector v7 from v6
list<int> 14(13); // creaLes a list f4 from 13
deque<int> d4(d2)i // creaLes a dqueue d4 from d2
return C;

3.2 Application of Container

i. Vector Class Template

The vector is part of the C++ Standard Template Library (STL); a combination of general-

purpose, templatized classes and functions that implement a wide range of common data structures

O"
ut$0rl OOP with C++ lntroduction to Standard .

and algorithms. The vector is considered a container class. Like containers in real-life, these
containers iue objects that are designed to hold other objects. In short, a vector is a dynami c array
designed to hold objects ofany type, and capable ofgrowing and shrinking as needed.

A vector is able to access elements at any position (i.e.,"random" access) with a constant time
overhead,O(1). Insertion or deletion at the end of a vector is faster. As with the string, no bounds
checking is performed when you use operator [].

Insertions and deletions anywhere other than at the end of the vector is not efficient (time
overhead is O(N), N being the number of elements in the vector) because all the following entries
have to be shuffled a.long to make room for the new entries, the storage being contiguour. Me*ory
overhead of a vector is very low comparable to a normal array.

In order to use vector, you need to include the following hlader file:
include <vector >

The vector is a part of the std namespace, so you need to qualify the name. This can be
accomplished as shown below:
ttqi na cf .l . .\16^1-

^, -,-Jf;vector<1nt> vfnts;
or you can fully qualify the name like this:

std: :vector<int> vfnts;
or by declaring global namespaces such as:

usj-ng namespace std;
As for the interface to the vector container, the member functions and operators of vector are

listed in the tables below.

Vector Member Funcilons
Following table shows some of the main vector functions. We can also use all the STL algorithms

on a vector.
Func-rbu,,i

assign0 Erases a vector and copies the specified elements to the empty vector.
at0 Returns a reference to the element at a specified location in the vector.
back0 Returns a reference to the last element of the vector.
begin0 Returns a random-access iterator to the first element in ttre container:

capacity0 Heturns the number of elements that the vector could contain without attocatinglnore
storage.

clear0 Erases the elements of the vector.
emptv0 Returns True if the vector container is gmpty.
end0 Returns a random-access iterator that points iust bevond the enct otJt "TItierase0 Removes an element or a range of elements in a vector trom specitieo positions.
front0 Returns a reference to the first element in a vector.
get_allocator0 Returns an object to the allocator class used by a vector.
insert0 Inserts an element or a number of elements into the vector at a specified position.
max_size0 Returns the maximum length of the vector.
pop_back0 Deletes the element at the end of the vector-
push_back0 Adds an element to the end of the vector.

o"
ffi oop

",tt'
c** t l'r'oa'"ro' ro sr'na"a " ' 0i6lii

rbeoin0 Returns an iterator to the first element in a reversed vector.

rend0 Returns an iterator to the end of a reversed vector.

resize0 Specifies a new size for a vector.

reserve0 Reserves a contiouous block of memory for the vector

reverse0 Reverses the order of the elements in the vector.

size0 Returns the number of elements in the vector.

swap0 Exchanoes the elements of two vectors.

vector0
Constrgcts a vectoi of a specific size or with elements of a specific value or with a specific

allocator or as a copy of some other vector'

Operators

Some of the operators defined for the vector container are:

Tne assignment operator replaces the target vector's contents with that of the source

vector:
vectorcinb a:

vector<int> b;

a.push_back(5);
a.push_back(1 0);
b.push_back(3);
b = 3i // The vector b now contains two elements: 5, 10

ttre sgUscnpt oeerator returns a reference to an element at the specified position of the

vector. n sriOsciipt value of zero returns a reference to the first element, and so on. The

subscript must be between zero and sizeQ-l. You can also use the subscript operator in.a

loop to access elements of a vector. The iubscripted vector may appear on the left or right

sides of an assignment (the returned reference is an lvalue):

vectorcdouble> vec;
vec.push_back(1 .2);

vec.push_back(4.5);
vec[1]=vec[0]+5.0;

= 2.7i // Vector now has two elements:2.7 ' 6.2

Test whether two vectors are

Test whether one vector is less than another

Test whether one vector is less than or equal to another

Test whether two vectors are

Test whether one vector is than another

Test whether one vector is than or equal to another

Following proglam illustrates the use of several functions of the vector class template:

m'la5
#1nc1ude<iostream>
1nc lude<vector>
using namespace std;
int main ()

{
vector<int> v; / / creaEes an empty vector v of type int

Or
ut$0tl OOP with C++ lntroduction to Standard . . .

cout<<rrOriginal size of a vector is:r'<<v.sizeO<<t'\n";
/ / putLing values into the vector
int a;
cout << "Enter Lhree integer values: rt l
Far /.i nr i -4. i z2 .!v! \4'u L-w, L -Jf i++)
{ cin >> a;

v.push_back (a) ;
)

cout<<ttSize after adding 3 values:"1
cout<<v. size ()<<tt\n";
/ /Display the contents
cout<< trContents of v:\nrtl
for (i=0i i<v. size () ; i++)

cout<<v Ii] <<" " i
cout<<rr\nrt;

/ / InserL one more value
v . push_back (4 0 . 6) ;

/ /DispLay the size and contents after
couL<< "\n Slze after inserting value:
cout<< " Now Contents are:\n,,;
for (i=0; i<v. size () ; i++)

cout<<vIi]<<tt";
cout<< rr \n tt ;

/ /InserELng elements
vector<int>: : j-terator p=y.begin () ;

arld i na rr: l rra
rr<<v. size () (<tt\ntt;

/ / iLeraLor

:rir{ i na rrr'l rra

3:'f <<v. size ()(<" \ntt;

p+=2; / / p points to 3rd element
rz incarf /n 1 ?\.v\ylLtJt I
//Display the size and contents aft.er
cout<< "\n Size after i-nserting value
cout<< trContents after insert:\nr';
for (i:0; i<v. size () ; i++)

cout<<vIi]<<t'"i
cout<< tt \n rt ;

/ /removing 2na and 3rd element
v. erase (v. begin () +L, v. begin 11 +2) ;

//Disp1ay the contents after de1etion
cout<< tt\n Size after erase:rf<<v.sizeO<<tt\n";
cout<< rrContents after erase:\n";
for (i:0; i<v. size () ; i++)

cout<<vIi]<<" t';
cout<<tt \ntt;
return 0;

t
iFilttJl

E

0utput
Original size of a vector is: 0
Enter three integer values: 10 20 30
Size after adding 3 values: 3

Contents of v: l0 20 30

Size after inserting value: 4

ffiffi OOP with C++ lntroduction to Standard . , .

o"
ut$0i

Now Contents are: 10 20 30 40

Size after inserting value 3: 5

Contents afterinsertlO 20 3 30 40

Size after erase:3

Contents afoer erase:lO 30 40

Explanation: ln the above program, in main0, an integer vector called v is created with an initial
capacity 0, i.e., initially v contains no elements. Next, the three elements are added at the end of the

vector v using the push_back0 function. The push-back0 takes the value as an argument and add it
to the end of the vector. You can also use insert$ function to insert the value into the vector. It takes

as arguments the position at which to start the insertion, the number of elements to insert and the

value to insert. To insert a single element, simply supply an iterator for the position and the value to

insert.

Then after inserting the values using push-back0 to know the size of the vector size() function is

used. So after inserting 3 values the content of the vector is 3. Since the type of the vector is int, so it
can accept only integer values and therefore the statement.

v.push_back(40.6) truncates the values 40.6 to 40 and then puts it into the vector at its back end.

The program uses an iterator to access the vector elements, the statements

vector<int> : : iterator p=v.begin () ; / / iLeraLor
declares an iterator p and makes it point to the first position or start of the vector by using the

begin0 member function. This function returns an iterator to the start of the vector. The statement

P+:2; / / n noi nt.s f.o 3rd element
v. insert (p, 1,3) ;

inserts value 3 as the 3'd element. Similarly the statement

v. erase (v. begin () +1, v. begin () +21 ;

deletes 2nd and 3'd elements from the vector. To delete the elements from the vector we use the

erase0 or pop_back0 functi.on. The erase0 function takes as arguments the position at which to start

the deletion and the position of the element at which the deletion should stop(i.e., this last element is

not deleted). The second argument is not required. To delete a single element, simply supply an

iterator for the element as the erase0'member function's single argument. If one wants to remove all
the elements at once from the vector. the vector.clearO function can be used.

ii. List Glass Template

The list container implements a classic list data structure; unlike a C++ array or an STL vector,

the objects it contains cannot be accessed directly (i.e., by subscript). The list container is defined as

a template class, meaning that it can be customized to hold objects of any type.

List is a Sequence that supports both forward and backward traversal, and provide a constant time

insertion and removal of elements at the beginning or the end, or in the middle. Compared to vectors,

they 6lls* fast insertions and deletions.

Lists don't provide random access like an alray or vectoro They support bidirectional iterators.

To be able to use STL lists add this header file before you start using them in your source code:

#incfude<11st>

O"
urErotl OOP with C++ lntroduction to Standard . .

Member tunctlons
Some used member ofthe list class are:

{i {irri ;iliiiiiliiiiiir::i,: flir,l

back0 Returns a reference to the last element of the list.

begin0 Returns a random-access iterator to the first element in the list.

cleao Erases the elements of the list.

emplyO Returns True if the list is empty.

end0 Returns a random-access iterator that points just beyond the end of the list.

erase0 Removes an element or a range of elements in a list from specified positions.

front0 Returns a reference to the first element in a list.

Insert0 Inserts an element or a number of elements into the list at a specified position.

max_size0 Returns the maximum length (the greatest number of elements that can fit) of the list.

merge0 Merge one list into other.

pop_back0 Deletes the last element of the list.

pop_front0 Deletes the first element of the list.

push_back0 Adds an element to the end of the list.

pop_front0 Adds an element at the start of the list.

rbegin0 Returns an iterator to the first element in a reversed list.

rend0 Returns an iterator to the end of a reversed list.

resize0 Specifies a new size for a list.

remove0 Removes specified elements.

remove_if Removes elements conditionally.

reverse0 Reverses the order of the elements in the list.

size0 Returns the number of elements in the list.

swap0 Exchanges the elements of two lists.

sort0 Sorts the list elements in ascending order.

splice0 Merges two lists in constant time.

swap0 Swaps the contents of this list with another list.

unique0 Removes duplicate elements from the list.

In addition to these member functions, some STL algorithms (e.g., find) can be applied to the list
container.

Note: The list template class is based on a doubly-linked list, and has all the functions of vector
except capacity, reserve, at.

ffiffi OOP with C++ lntroduction to Standard .

O"
util0tl

Operators
Some deftnedfor the listthe contatner are:

The assignment operator replaces the target list's contents with that of the source list:

For example: list<inb a;

list<inu b;

a.push-back(S);
a.push_back(1 0);

b.push_back(3);

b=4i
// The list b now contains two elements: 5, 10

t- Test whether two lists are unequal

Test whether one list is less than another

<= Test whether one list is less than or equal to another

Test whether two lists are equal

Test whether one list is greater than another

>= Test whether one list is greater than or equal to another

Note that there is no subscript operator for the list container, since random access to elements is

not supported.

Following program illustrates the use of the above member functions:

#include<iostream>
incl-ude<l- i st >

include<cstdl ib>
using namespace std;
void dlsplay (1ist<int>
{' list<int>::iterator

for (iter:lst . begin o
cout<<*iter I

cout<<"\n\nt';
It
int main ()

1

listcint>listl; / / create an empty list
list<int>list2(5); // Create a list havlng 5 eLements.
int i;
/ /Insert the eLement into the 1st Li-st
for (i:0 ; i<3 ; i++)
1 r Ar I ^'.^L 1^-^k (rand () /1001 ;tIDUl.PUDrr_!qg^\!qtru\l I Lwvl I

/ /InserL the element into the 2no List
list<int>: :iterator iter;
for (iter:list2.beginO ; iter=1ist2.end() ;++iter)*iter:rand () /100;
cout<<t'The content of the 1ist 1:t';

// tor using r ando function
.d

&1st)

iter;
; iter !:lst.end () ; ++iter)

o"
sil0i OOP with C++ lntroduction to Standard . . .

display(1ist1);
cout<<r'The content of the list 2:rr;
di-splay(1ist2);
//rns,arf incr elFments at the end of the list2e5..Y e-vrrl

list2.push_front (10) ;
1ist.2 . push_back (201 ;
/ /Erasing elements at the front and back of the listL
list.1.pop-front () ;
Iistl.pop-back () ;

cout<<'rNow the content of the list 1;";
display(listl-);
cout<<rrThe content of the List 2:rr;
display(1ist2);
l-ist<int> 1stL,-l-st2 i
1st1:1ist1; / / Inj-Eialization of obiects
l-st.2=List2;
/ /Merge the two unsorted lists
Iistl.merge(Iist2);
if (l-ist2.emptyO)

cout<<"List2 is now empty");
cout<<ttContent of listL after merge:";
display (IistL) ;
//SorE and Merge
Istl. sort O ;
'I cl- ? cnrf /\ .

sv! e \ / t

Istl.merge (Ist.2) ;
cout<<"The merged sorted list is:t';
display(Ist1);
,/,/Reverse a list
Istl.reverse () ;
cout<<trReversed Merged List is: " I
display(lst1);
return 0;

Output
The content of the list 1 : 1 2 3

The content of the list 2:3O 4O 50 60 70

Now the content of the list 1:2

The content of the list 2: 10 30 40 50 60 70 20

Contentof listl aftermerge:2 IO 30 40 50 60 7A 20

List2 is now empty

The merged sort€d list is: 2 10 20 30 40 50 60 70

Reversed Merged List is: 70 60 50 40 30 20 10 2

Explanation: The program uses two empty lists: listl with zero length and list2 of size 5. In listl
we insert the value using push-back0 and a math function randQ and in list2 we use a list type
iterator iter and a for loop to insert values. The begin0 function give the first position of the element

ffi OOP with C++ lntroduction to Standard . . .

o,
utfl0tl

and end0 function gives the position immediately after the last element respectively. We insert the
element in the list2 at both ends using push-front0 and push_backQ functions. At the same time
remove the first and last element from listl using the pop-front0 and pop_back0 functions.

The mergeQ function merges listl with list2 and the result is placed in the listl hence the list2
becomes empty. Here we use the empty$ function, which retums true if the invoking container is
empty.

A list may be sorted in ascending order using a sort0 member function and reverse0 function is
used to reverse the content of the list.

The display0 function is used to display the contents of lists.

iii. Deque Class Template
The deque class is a sequence container that is part of the Standard Template Library, or STL.

Deques, like vectors, provide random access iterators that allow constant time (fast) access to any of
their elements and can be used with any of the generic algorithms. They also are optimized for
insertions and deletions at their beginnings and ends. Due to internal structure of deques, they tend to
be slightly less efficient than vectors. That is, manipulations using deques will operate slightly
slower than the same operations on vectors. Deques are the container of choice if you will be doing
insertions and deletions at both ends. As with vectors, if insertions and deletions will be done in the
interior of the sequence, lists may be a better choice.

Member Functions
Following are the deque (pronounced deck) methods. Notice that they are the same as the vector

member functions with two exceptions. First, two member functions have been added to insert and
delete from the front: pop-front and push-front. Remember that deques are optimized to allow
insertions and deletions at both their beginnings and ends. Second, the capacity and reserve methods,
present in the vector class, are not part of deque. This is because the issues with the size of the
allocated block of memory are pertinent only to vector. Vector requires a contiguous block of
memory. Deque has a different intemal structure. To be able to use STL deque add this header file
before you start using them i codeusrn n your source cooe: #1nc_Lude<deque>

assrgn Clears a deque and assigns the specified elements to it

at Returns a reference to the element at the specified position

back Returns a reference to the element at the end of the deque

begin Returns an iterator to the start of the deque

clear Flemoves all elements from the deque

empty Tests whether the deque is empty

end Returns an iterator to the end of the deque

erase Removes element(s) at specified position(s)

front Returns a reference to the first element in the deque

insert Inserts element(s) at specified position(s)

max_size Returns the maximum size of the deque

O"
ut$0tl OOP with C++ lntroduction to Standard .

pop_back Removes the element at the end of the deque

pop_front Removes the element at the front of the deque

push_back Adds an element to the end of the deque

push_front Adds an element to the front of the deque

rbegin Returns a reverse iterator to end of dqueue

rend Returns a reverse iterator to beginning of dqueue

resrze Specifies a new size for a list

stze Returns the number of elements in the deque

swap Exchanges the contents of two deques

Opentor

+ li'iiiii,liiiiL .ii:;i: iitiui tii:rr.;;

t1 Returns a reference to the element at the specified position

t- Test whether two deques are unequal

Test whether one deque is less than another

<= Test whether one deque is less than or equal to another

Test whether two deques are equal

Test whether one deque is greater than another

>= Test whether one deque is greater than or equal to another

Most of the methods of deque are same as vector. The program given for vector will also work
for deque. Following program shows how to use some of methods of the deque class that were not
illustrated in the vector example. Remember,that both vector and deque allow fast random access to
their elements, with vector being slightly faster. Vectors are optimized for insertions and deletions at
their ends. Deques are optimized for insertions and deletions at both ends.

F='1
tL_ilX

#include<deque> // Needed to use the degue cJass
#include<iostream>
using namespace st.d;
int main O {
/ / Create an empty deque
deque<float> deql;
/ / Create an iterator variable
deque<float>: : iterator iter : deql . begin O ;

/ / I,oad from the back notice the ordering of the eLements in the output
deql.push-back (2.5) ;
deql.push_back (3.5) ;
/ / iLer was i-nltialized above
for (; iter !: deql . end O ; iter++)
tI

cout << *iter << tt ";
]

OOP with C++ lntroduction to Standard . . .

Or
ut$0tl

cout << endl;
/ / Load from the front
// Notice the ordering of the elements 1n the
degl.push_front (67. 8) ;
deql .push_front (33. 3) ;
for(iter = deql.beginO; iter !: deql.endO;
t

cout << *iter << rr t';
)
cout << endl;
cout << rrDeque contaj-ns tt << deql . size o
/ / Clear the deck or deque
Aaal alaar/I.vrvs! \, /

/ / ChecL if deque is emtpy
if(deql.emptyO) {

cout << "Deque is empt.y" << endl;
)
el-se {

cout << trDeque is not
)
cout << I'Deque contains
return 0;

l

ouEpuu

'i f cr++)

elementsr' << endl;

emptyrr << endl;

" << degL. size () el-ementsrr << endl;

Output
2.5 3.5
33.3 67.8 2.5 3.5
Deque contains 4 elements
Deque is empty
Deque contains 0 elements

The following example shows how to combine the use of the generic algorithms with the deque
container class. Notice how easy it is to search for a value and to merge two sequences. The
combination of the container classes and the generic algorithms leads to simple progamming
solutions.

t-Tl
It--ll,-
#incLude<deque>
#1nc1ude<algorithm>
inc lude< iostream>
using namespace std;
in1- main/l I
/ / CreaEe two degues containlng number seguences

int arrl [5] = 14,8,6,1,5];
deque<int> deql(arr1, arrl + 5);
int arr2 [5] = 14,10,8,6,1,2];
deque<int> deq2 (arr2, arr2 + 5l;
/ / CreaEe an iterator variab.l-e
degue<int>: :iterator iteri
/ / Search for a value within deql

// N.eeded to use the deque class
// Needed for generic algorithms

O.
ut$0tl OOP with C++ lntroduction to Standard . . .

iter = flnd(deq1.beginO, deql.endO,
if (iter == deql.end ()) {

cout << "deq1 does not contain 4rr << endL;
I
else
{

cout << ttdeql" contains rt << *iter << endl;
]
/ / Merge t.wo sorted sequences j-nto a single deque
/ / Both deql and deq2 must be sorted before using merge
/ / Tl:re mergedResults deque must be large enough to hold the results
deque<int> mergedResults (deql. size O + deq2. size O) ;

sort (deql.begin (), deql-.end());
sort (deq2.begin(), deq2.endO);
merge (deql-.begin (), deql .end(), deq2.begj-n (), deq2.end (),

mergedResul-ts.begin ()) ;
for(iter = deql.beginO; iter !: deql.endO; lter++)
{

cout << *iter << rr ";
]
cout << endl;
for(iter = deq2.beginO; .iter !: deq2.endO; iter++)
{

cou.t << *iter << tt " i
)
cout << endl;
for(iter = mergedResults.beginO ; iter l= mergedResults.endO ; iter++)
{

cout << *iter << tt ";
i
cout << endl;
return 0;

i
l-r

Output
deql contains 4

45678
468t0t2
4456678810 12

iv. A Stack Container Adapter
A stack is a data structure that supports

pushed (placed) on the stack will be the
representation of stack.

In First Out Processing. The last object
popped (removed). Figure shows the

LIFO, Last
first to be

OOP with C++ lntroduction to Standard . . .

o"
ur$0i

Push in Push out

The stack0 constructor creates an empty stack. By default it uses the a deque as a container but a
stack can only be accessed in last in first out manner. You may also use a vector or list as a container
for a stack.

Member Function

The following members functions are definedfor stack

i:Fin$.q!ffi
empty True if the stack has no elements

pop Removes the top element of a stack

push Adds an element to the top of the stack

size Returns the number of items in the stack

top Returns the top element of the stack

The comparison operators defined for stack &fs i ==, (,(=,!=,),)=

Stacks are only accessed at their top. To be able to use SII stacks in a file of C++ source code or
a header file add #include<stack> at the beginning of the file.

Following program illustrates how to create and manipulate stack:

mtElgi

include<lostream>
include<stack>
using namespace scd;
int main ()

{ stackcinc, list<int>> st;
cout<< "Add three elements into the stack:";
for (int i=0; i<3; --i)

i
st.push(i); // push three elements into che scack
cout<<i<<ttntt I

]
//

^^^:n^
nrini -11 ^r^*^-+^/ f PUIJ arru lvr rlrL dII C!gltlgrrUD

^^1jf
aa lln T'ira 56nnaz{ al aman- o9VU!\\ tr flls,vW-UPgU VAgltLglItD

int size:st. size () i
for (int i=0; 1<size; ++i)

{
cout << st. top o
st.pop () ;

]
return 0;

]

from the stack
from the stack arei"1

l-1

o"
ut$0tl OOP with C++ lntroduction to Standard

Output
Add three elements into the stack:

I

3

The popped elements from the stack are:3 2 1

Y. The Queue Container Adapter
A Queue is a data structure that supports FIFO, first in first out processing. Objects will be

processed in the order they enter a queue, i.e., the elements are inserted ar one end and taken out
from the other end.

Figure /3.3 shows a representation of the way a queue normally processes data.

Figure 13.3: A F|FO queue
A queue constructor creates an empty queue. By default it uses a deque container but a queue can

only be accessed in FIFo manner. You can also use list as a container for queue.
The comparison operators defined for queue 41s ; ==,(,(=,!=,>,>=
To be able to use SZZ queues add header file(# include <queue>) before you start using them in

your source code:
#incl-ude<queue>

Member Functlon

Frghcito-n..i ',Pe#-*ptton
back returns a reference to last element of a queue

empty true if the queue has no elements

front returns a reference to the first element of a oueue
pop removes the top element of a queue

push adds an element to the end of the oueue

size returns the number of items in the queue

Following program illustrates how to create and manipulate queue.

m
include<iostream>
#include<queue>
us:-ng namespace std;
int maln ()

ffiffi OOP with C++ lntroduction to Standard . . .

o"
ur$0tl

{ queue<int, lisl<int>> qe;
cout<< "Add three elements lnto the queue:"1
for (int i-0; i<3 ; ++i)

{
^L / i \ .

9s . PUDrr \ i,/ ,
cout<<i<<rtn't;)

/ / push three elements into the queue

/ / nar :nd nri nf 4|l elements ffOm the queue
lt

cout<<"\n The popped elements from the queue are:'rI
int size=ge. size () ;
for (int i:0; i<slze; ++i)

{
cout << qe. front o
qe.PoPO;)

return 0;
Erl

Output
Add three elements into the queue:

1

2

3

The popped elements from the queue are:l 2

yi. The Priority Queue Container AdaPter

Priority Queues are like queues. The elements arc popped from the sequence in order of priority

which is based on the supplied comparison function (called a predicate). By default the predicate is

less<>, i.e., while adding or removing a value from the priority queue the contents are arranged in

descending order.

Flgure 13.4: A prlorlty queue

Figure 13.4 shows a representation of a priority queue. This type of queue assigns a priority to

every element that it stores. New elements are added to the queue using the push0 function, just as

with a FIFO queue. This queue also has a pop0 function, which differs from the FIFO pop0 in one

key area. When you call pop0 for the priority queue, you don't get the oldest element in the queue.

Instead, you get the element with the highest priority'

Or
urfl0rl OOP with C++ lntroduction to Standard . . .

A priority queue constructor creates an empty priority queue. By default it uses vector as a
container but you can also use a deque as a container for priority queue.

To be able to use STL priority queues add this before you start using them in your source code:
i nc l-ude <queue>

Member Functlon

iiii jj
empty true if the priority queue has no elements

pop removes the top element of a priority queue

push adds an element to the end of the priority queue

srze returns the number of items in the priority queue

top returns the top element of the priority queue

Following program shows how to create priority queue and manipulate it with different functions:
Ii-"TlIIJI

,E

incl-ude< ios tream>
#incl-ude<f i st>
#incl-ude<queue>
using namespace std;
1nt. maln ()

{
nr.i a-i +" ^"^'.^ /€1 ^^+yr 1v! r uy_Yusus\! lvd L,
/ / inserL six elements

vector<float> > q;
into the priority queue

q.push (66.6) ;
q. push (22 .2) ,
q.push (44.4) t
q.push(11.1);
n nrrclr /qR q\ .

\JJ. J I
'c nrr<h1?? ?\.

\JJ '
J I f

/ / nan rnA nrinf +ha alaman+a| / uvy qrlu I/! f rr L Lrrs 9IgltLglt uD

cout<< "E.l-ements removed from the priority queue:,, I
i nf qi zo:a <i zo / r .

:. erlu \ / t

for (int i=0; i<size;++i)
{ cout << q.lopo

q.pop o ;
)

return 0;

0utput
Elements removed from the priority queue:
66.6 55.5 44.4 33.3 22.2 11.1

In the above program, we define the priority queue using the default less<> predicate, therefore
the values removed from the sequence in order from largest to smallest. If we define the priority
queue using the greater<> predicate then the highest priority value is the smallest because the values
are arranged in the priority queue in ascending order. To use the greater<>predicatejust replace the
line

mg

ffi OOP with C++ I ntrod uction to Standard
o,

utst0tl

prior 1ty_queue<f lcat,
wirh

pr i or 1ty_queue<f loat,
and the output will be

Elements removed from the priority queue:
1,L.L 22.2 33.3 44.4 55.5 66.6

4. Algorithms
The STL algorithms are template C++ functions used to perform operations on containers,

Although each container provides functions for its own basic operations, the standard algorithms
provide more extended or complex actions. Also we can work with two different types of containers

at the same time by using algorithms. By using <algorithm> header file in our progrcm we can

access the STL algorithms.

In order to be able to work with many different types of containers, the algorithms do not take

containers as arguments. Instead, they take iterators that specify part or all of a container. In this way

the algorithms can be used to work on entities that are not containers; for example: the function copy

can be used to copy data from standard input into a vector.

The generic algorithms fall into following four categories:

4.a Non-modifying Sequence Algorithms
On a container (sequence), you may need to perform different

functions that don't need to modify the contents of the container on

which they work. For example; If you want to search an element in a

container then it does not require you to modify the contents of the

container. STL defines the following non-modifying algorithms.

Thev all require the #incrude<al irh file.

vector<float> > q;

vector<f1oat>, greater<f1oat> > q;

''d$ oe'ngrlc
i Aftl-O.frllhrc r,',...' ri -:.,,,*ffi

re nc al-gor m

iiiiil
adjacen!_find0

Searches for adjacent matching elements within a sequence. lt returns an iterator to the
first match.

countO Counts the number of elements in a sequence.

count_if0 Returns the number of elements in the sequence that matches a predicate.

equal0 Returns TRUE if two ranges are same.

equal_range0
Returns a range in which an element can be inserted into a sequence without changing the
order of the sequence.

find0 Returns the first occurrences of a specified value in a sequence'

find_end0 Returns the last occurrences of a specified value in a sequence.

find first of Returns the first element within a sequence that matches an element within a range.

find_if0 Finds the first match of a predicate in a sequence.

for_each0 Performs the operation for each elements in the range.

O"
ut$0tl OOP with C++ Introduction to Standard . . .

A priority queue constructor creates an empty priority queue. By default it uses vector as a
container but you can also use a deque as a container for priority queue.

To be able to use STL priority queues add this before you start using them in your source code:
include<queue>

Member Functlon

empty true if the priority queue has no elements

pop removes the top element of a priority queue

push adds an element to the end of the priority queue

size returns the number of items in the priority queue

top returns the top element of the priority queue

Following progam shows how to create priority queue and manipulate it with different functions:
tT:'litLJi,&

inc l-ude<iostream>
#include<1ist>
#lncfude<queue>
using namespace std;
int main ()
{

nri a-i +" ^,,^,.^ '€1^^ry! r v! a L),_Y us u Y \ ! f 9d L ,

/ / ineerE six elements
vectorcfloat> > q;

infd fha nriariJ-rr arrarra4uJ Yusqs
a nrrch IAA A\.

\vv.v, t

a nrrqh l), ,\ .
\-L. - t f

q.push (44.4');
q.push(11.1);
d hrlch r \\ \ | .

\rJ. J I I

Y.tssurr\rJ.rL

/ / pop and print the eLements
cout<< "El-ements removed from the nri nri 1-ar 6rr5115. rr r

r- +vr + 9J :gvuv. ,int size:q. size () ;
fnr / i n+ .i

-n.
.i znf 26, r+i \!v! \JrIL I-V, l\Df Zs, TTI,,

{ cout << q.topo
q.pop o ,

]
return O;

Output
Elements removed from the priority queue:
66.6 55.5 44.4 33.3 22.2 11.1

In the above program, we define the priority queue using the default less<> predicate, therefore
the values removed from the sequence in order from largest to smallest. If we define the priority
queue using the greater<> predicate then the highest priority value is the smallest because the values
are ananged in the priority queue in ascending order. To use the greater<>predicatejust replace the
line

mg

ffi OOP with C++ lntroduction to Standard . .

o,
ut8t0!l

pr ior 1ty_queue<f lcat,
wirh

^ri nri t- rr arrarraa€1^^ty! tv! r ef _Yqeqe \! !vqut

and the output will be

Elements removed from the priority queue:
rL-r zz.z 3J.5.r1 ,r+ 5f,.f, bb.o

4. Algorith ms
The STL algorithms are template C++ functions used to perform operations on containers.

Although each container provides functions for its own basic operations, the standard algorithms
provide more extended or complex actions. Also we can work with two different types of containers

at the same time by using algorithms. By using <algorithm> header file in our program we can

access the STL algorithms.
In order to be able to work with many different types of containers, the algorithms do not take

containers as arguments. Instead, they take iterators that specify part or all of a container. In this way
the algorithms can be used to work on entities that are not containers; for example'. the function copy

can be used to copy data from standard input into a vector.

The generic algorithms fall into following four categories:

4.1 Non-modifying Sequence Algorithms
On a container (sequence), you may need to perform different

functions that don't need to modify the contents of the container on

which they work. For example; If you want to search an element in a

container then it does not require you to modify the contents of the

container. STL defines the following non-modifying algorithms.
file.

vector<f1oat> > gi

vector<f1oat>, greater<float> > q.i

ffi
al ire the # i nc l-ude<a I gor ithm>

irtfi

adjacen[_find0
Searches for adjacent matching elements within a sequence. lt returns an iterator to the
first match.

count0 Counts the number of elements in a sequence.

count_if0 Returns the number of elements in the sequence that matches a predicate.

equal0 Returns TRUE if two ranges are same.

equal_range0
Returns a range in which an element can be inserted into a sequence without changing the
order of the sequence.

find0 Returns the first occurrences of a specified value in a sequence'

find_end0 Returns the last occurrences of a specified value in a sequence.

find first of Returns the first element within a sequence that matches an element within a range.

find_if0 Finds the first match of a predicate in a sequence.

for_each0 Performs the operation for each elements in the range.

o"
utilotl OOP with C++ lntroduction to Standard . . .

mismatch0 Finds first mismatch between the elements in two sequences. lterators to two elements are
returned.

search0 Searches for subsequence within a sequence.

search_n0 Searches for a sequence of a specified number of similar elements.

4.2 Mutating Sequence Algorithm
Some types of a sequence operations results in modifying the contents of a container on which

they work' For example: If you want to copy one part of a sequence into another part of the same
sequence so in such case the mutating sequence algorithm provide a copy function. STL defines the
following mutating algorithm. They all require the #incrude<atgorlthm> file:

iriiiiinu #
copy0 Copies a sequence.

copy_backward0 This functions copies the elements starting from the end of the sequence, i.e., it works
backward to first.

fiil0 Fills a sequence with a specified value.

fill_n0 Fills first n elements with a specified value.
generate0 Assigns the value returned by a generator function to all elements in a sequence.
generate_n0 Assigns the value returned by the generator function to first n element in a sequence.
iter_swap0 Exchanges the elements specified by the two iterators
random_shuffle0 Places elements in random order.

remove0 Removes elements of a specified value.

remove_copy0 After removing a specified value copies a sequence
rernove_copy_if 0 After removing elements that matches a predicate copies a sequence.
remove_if0 Removes the elements that match the predicate.

replace0 Replaces elements with a specified value.

replace_if0 Replaces elements matching a predicate.

replace_copy0 After replacing elements with a given value copies a sequence.
replace_copy_if 0 After replacing elements matching a predicate copies a sequence.
reverse0 Reverses the order of elements

reverse_copy0 Sequence is copied in reverse order.

rotate0 Left-rotates the elements in a sequence

rotate_copy0 Copies a sequence after rotation.

swap0 Exchanges two elements

swap_ranges0 Exchanges elements in a sequence.

transform0 Applies the function to each element in a sequence and stores the result in a new
sequence.

unique0 Removes duplicate elements form a sequence.
unique_copy0 After removing duplicate elements copies a sequence.

4.t Sorting Algorithm
STL provides various functions for sorting the contents

only). Following table lists the sorting and sorting related

algorithms require the # i n c f ude < a 1 gor i thm> file:

of a container (random-access container
functions and their descriptions. Sorting

iiiiii,i'iilirir.l.i

binary_search0 Performs a binary search on an ordered sequence.

equalrange0 Finds a subrange of elements with a given value'

includes0 Returns TRUE if one sequence includes all elements of another sequence.

inplace_merge0
Merges two sequences sorted in increasing order and the resulting sequence is

also sorted.

lexicographical_compare0 Compares one sequence with another alphabetically.

lower_bound0 Finds the first position in a sequence that is not less than the specified value.

make_heap$ Creates a heap from a contents of a sequence'

max0 Returns the maximum of two values.

max_element0 Returns the maximum element within a sequence.

merge0 Merges two sorted sequences and place the result into a third sequence,

min0 Returns the minimum of two values.

min_element0 Returns the minimum elements within a sequence.

nth_element0
Arranges a sequence such that all elements to the left of the nth element are

less than or equal to all elements to the right of the nth element.

nextjermuiation0 Constructs next permutation of a sequence.

prevjermutation0 Constructs a previous permutation of a sequence.

partial_sort0 Sorts a part of a sequence.

partial_sort_copy0
sorts a part of a sequence and copies as many elements as will fit into a

resulting sequence.

partition0
Arranges a sequence such that all elements that matches with a predicate are
placed first and then all elements which are not matches with a predicate are
placed,

pop_heap0 Removes the top element.

push_heap0 Adds an element on to the end of a heap.

sort0 Sorts a sequence.

sort_heap0 Sorts a heap within a specified range.

stablelcartiotin0

Arranges a sequence such that all elements that matches with a predicate are

placed first before the elements which are not matches with a predicate. The

partitioning is stable that means the relative ordering of the sequence is

preserved.

stable_sortfl
Sorts a sequence. The sort is stable. This means that equal elements are not

rearranged.

upper_bound0
Searches a sequence of sorted elements for the correct last position for the

specified value and returns that position.

sel_difference0 Creates a sequence that contains the difference between two ordered sets.

o"
UFNN OOP with C++ lntroduction to Standard . . .

set_intersection0 Creates a sequence that contains the intersection of the two ordered sets.

set_sym metric_diff erence ()
creates a sequence that contains the symmetric difference between the two
ordered sets.

set_union0 Creates a sequence that contains the union of the two ordered sets,

4.4 Numeric Algorithms
Numeric algorithms are used to perform four types of numeric calculations on the contents of a

sequence. Following table describes these four functions along with their descriptions. They all
require the #include <numeric> file:

r:lrliii$S iiililiiiiriiliii i l+ft.ffi
accumulate0 Accumulates the results of operations on a sequence.
adj acen!_diff erence () Calculates the adjacent difference of the elements.
inner oroduct0 Accumulates the results of operation on a pair of sequences.
partial_sum0 Calculates the partial sum of the elements.

5. Iterators
Iterators are objects that acts like an pointer, i.e., they specify the location for containers or

streams of data. For example: int* can be used as a location specifier for an array of integers, or an
ifstream can be used as a location specifier for a file. STL provides a variety of iterators for its
different collection types and for streams.

Iterators are used throughout the STL to access and list elements in a container. They are often
used to traverse from one element to other, a process known as iterating through the container.

Iterator Categories
There are five categories of iterators in STL and the Standard C++

Library which are as follows:
i. Input lterators: Input Iterators are (along with Output Iterators) the

least powerful ofall iterator types; as such they are supported by all
STL containers. A program can use an input iterator only to read the contents of a container.
In order to traverse a sequence, an input iterator can be incremented (but not decremented) and
compared for equality or inequality using the == and != operators.

ii. Output Iterators: A program can use an Output Iterators to write to the contents of a
container. In order to traverse a sequence, an Output Iterator can be incremented (but not
decremented).

iii. Forward Iterators: Forward Iterators combine Input Iterators and Output lterators. They can
be used to traverse containers in one direction (i.e., forward), for reading and/or writing.
However, a program can save the value of a forward iterator in order to restart traversing a
container from the iterator's original position.

ffi OOP with C++ lntroduction to Standard . .

Or
ur$0tl

iv. Bidirectional lterators: Bidirectional lterators can iterate in a forward or reverse direction
over the contents of a container, both reading and writing as required by the program. In this
way, a bi-directional iterator combines the capabilities of a forward iterator with the capability
to ffaverse a sequence in reverse. Bidirectional supports all operations of forward iterators.

v. Random-access lterators: The most powerful of the iterator types, random-access iterators

have all the functionality of bi-directional iterators with the ability to use pointer arithmetic
and all pointer comparisons.

Following table 13.2 summarises the above iterators:
Table 13.2

$iiiii+ll,iiir
'ii iil

Input lterator
This iterator is read-only. That is it cannot be
assioned to.

=, ==, !=, *, ->, ++, NO

assionment of *i

Output lterator This iterator is write-only. lt cannot be read. ,=, and ++

Forward lterator This iterator is ReadMrite iterator. =, ==, !=, *, ->, and ++

Bidirectional lterator This iterator is ReadMrite iterator =, ==, !=, *, ->, ++, and --

Random Access lterator This iterator is ReadMrite iterator =, ==, !=, *=, -=, , ->, +, ++,
, [nl, <, <=, >, altd)=

Each category adds new features to the previous one. The iterator categories obey the following
order:

Input Output

forward
I
I

I

bidirectional
I
I

I

random access

Flgure 13.5

We can use the iterator having greatrr access capability in place of one that has lesser capability.
For example: A bidirectional iterator can be used in place of forward iterator.

Iterators are declared using the iterator type defined by various containers. Table 13.2 shows the

type of iterator supported by each container.
In addition to the above type STL also support reverse iterators which are either bidirectional or

random-access iterators that move through a sequence in the reverse direction. Thus, if a reverse

iterator points to the end of a sequence, incrementing that iterator will cause it to point to one

element before the end.

5. Function Objects
Function objects or function are classes that have the function operator, 0, overloaded. Many of

the algorithms have versions that take a function or function object as an parameter.

o,
ut8t0tl OOP with C++ lntroduction to Standard . . .

These function or function objects usually take one or two parameters and sometimes return a
Boolean, i.e., true/false value or sometimes processes the objects that the algorithm finds and returns
an object of the type in the container.

A function objects come in two varieties:
i. Unary Function: A function object that takes a single argument, i.e., one that is called as f(x).
ii. Binary Function: A function object that takes two arguments, i.e., one that is called as

f(x, y)).
For using function object, we must include <f unctional> header.
Following tabte 13,3 summnrizes the STLfunction objects:

Predicate
Many algorithms and containers use a special kind of function called a predicate. A predicate is a

function that returns a boolean value. There are two variations of predicates: Unary and Binary. A
unary predicate takes only one argument whereas a binary predicate takes two arguments. These
functions retum true/false result. In case of a binary predicate the arguments are always in the order
of first, second. For both unary and binary predicates the arguments will contain values of the type of
objects being stored by the container.

Let's see how a predicate can be used to extend the functionality of the sort algorithm. We have
already used less<> predicate while illustrating the example of priority queue. In the following

Table 13.3

Arithmetic
plus<T> Takes two arguments of the same type and returns their sum, i.e., arql +aro2 Binary

minuscT> Returns the result of subtracting argument two from argument one, i.e.,
argl-arg2 Binary

multiplies<T> Takes two arguments of the same type and returns their product, i.e.,
argl-arg2 Binary

divides<T> Divides argument one by argument two, i.e., argllarg2 Binary
modulus<T> Returns the modules of the two arguments, i.e,, argloAarg2. Binary
negate<T> Returns the negative of a single argument, i.e., -arg1. Unary
Relational

equal to<T> Takes two arguments and returns true if arol == dte2. Binary
not equal to<T> Takes two arguments and returns true if argl l= arg2, Binary
qreater<T> Takes two arguments and returns true if arol > arg2. Binary
less<T> Takes two arguments and returns true if argl < arg?. Binarv
oreater eoualcT> Takes two arguments and returns true if argl >= a(e2. Binary
less equal<T> Takes two arguments and returns true if argl <= argz. Binary
Logical
looical and<T> Takes two arguments and returns true if argl && aro2. Binary
logical or<T> Takes two arguments and returns true if argl ll arg2. Binary
looical not<T> Takes one argument and returns true if not, i.e., larol. Unary

Note: Here the argl and arg2 are the objects of class T passed to the function object as arguments.

OOP with C++ lntroduction to Standard . , .

o"
urfl0ll

example let us see how the predicate greater<inD can be used to override the default ascending

order. Likewise, the predicate lesscinb restores the original ascending order:

rEll,

-#incl-ude<functlonal> / /definitions of STL predicates
#include<algorithm> / /definition of sort
inc lude<vector>
#incf ude<iost.ream>
using namespace std;
int main ()
I
I

vector<int> vi;
vi . push-back (9) ;
vi.push_back (5) ;
vl.push-back(l-0);
sort (vi . begin O , v1. end O , greater<int> o
cout<< vi [0]
sort(vi.beginO, v1.endO, less<int> O);
cout<< vi t0l
return 0;
l

\: // daeaandinc OrdefL I t svvver.s*rrY

t2) <<endf; // ouLputt 10 9 5

/ / now in ascending order
12) <<endl-; // ouLputz 5 9 10

l-ill

7. Allocators
Every STL container class defines an allocator class that fiurnages the allocation of memory for

the container or encapsulates the memory model that the program uses. Allocators hide the platform-
dependent details such as the size of pointers, memory organization, reallocation model, and memory
page size. Because a container can work with different allocator types, it can easily work in different
environments simply by plugging a different allocator into it. An implementation provides a suitable

allocator for every container. Normally, users should not override the default allocator.
The default allocator is an object for a class allocator and STL provides a default allocator object

for each containel, so you should not need to deal directly with the allocator class. You can also

define your own allocator if needed by specialized applications.
For most uses. the default allocator is sufficient.

Note: Whenever a container inserts or removes an element, it uses its allocator to allocate and

deallocate the memory for the object. The container does not know anything about the

memory model of the machine, it relies on the allocator for all of its memory needs.

8. Adaptors
Sometimes you have a class that does the right thing, but has the wrong interface for your

purposes. Adaptors are classes that sit between you and another class, and translate the messages you
want to send into the messages the other class wants to receive. In short, an adaptor is a component

that modifies the interface of another component.

O"
util0tl OOP with C++ lntroduction to Standard . . .

For example; The copy function expects an input iterator to get its data from. The istream class

has the right functionality: it acts as a source of data, but it has the wrong interface: it uses << etc.

STL uses several types of adaptors:

i. Sequence Adaptor: It is a container that's built on another container and that modifies its
interface. For example: The container stack is usually implemented as a deque, whose non-
stack operations are hidden. ln addition, stack uses the operations back0, push-back0, and
pop_back0 of a deque to implement the operations topQ, push0, and pop0, respectively.

For example

tllt .

T
!fi
Itr
u
J.

T

topmost << endl;

strcf er-k . tnn /). evr \ / \

/ / "Harischandre"
anrll. //[Mrrlni] [vrrvr t

include<string>
incl-ude<stack>
incl-ude< iostream>
sing namespace std;
nt main ()

stack<string> strstacki
strstack. push ("Mrunal-") ;
strstack . push ("Harischandre") i
af ri na f ^^h^rf = <i- rcl-rnL l- nn / \ .DL!rrr9 LUPrlrvDL - r ,Lv}J\rt
cout<< "topmost element 1s:
strstack.popO;
cout<< trtopmost element is:
return 0;

t-n
a!5

hether

n.

ut.

Calling the member function popQ on an empty stack is an enor. If you are not sure w
stack contains any elements, you can use the member function empty$ to check it first.
For example
stack<int> stki
/ / . . .many lines of code
if (! stk. empty ()) / /test stack before popping it
i

, ".O.pop O ;

Iterator Adaptors: The interface of an iterator can be altered by an iterator adaptor. The
member functions rend0 and rbeginQ return reverse iterators, which are iterators that have the
meanings of operators ++ and -- exchanged. Using a reverse iterator is more convenient in
some computations.

Function Adaptors: It modifies the interface of a function or a function object. Earlier you
saw the use of gteater as a function adaptor for changing the computation of sort0.

Negators: Negators are used to reverse the result of certain Boolean operations.

Binders: Binders convert a binary function object into a unary function object by binding an
argument to a specific value.

lv.
v.

OOP with C++ lntroduction to Standard . .

o,
utflotl

Solved Prograrns
.:,li ''

jl .r:'r.;r'. .:1: ij:..r:. .::. rr ..j. .r: .: .- '1 ' ..:. it:il:l il ;:i1..:r'rj
ahows,how' to',sreate:"a:,#e bf .i ni r sa r r-v e#'t t ri.rff ufl

,n,t l
,rrr't, 1. li:.:i'r,:r..r':it.::...i' ,:li , r.r;.i.ir-i: :.':|i

r;*$rffi
'll+tlllffi

rfiiffifr*i*

J:;';

*r t *"=.r: uevi"U *ff ;* rl;"i|ffi
,t

r.eturni'b;

fr;**[tH ';ryf;-

.i.1'''i.'iiftffira;'1'
111

ana prrn'c

ki;.i'T:ff '''"--'
itl:iffilF= '' r]r Ii

ffi*i'rffiiiru-iFft*ffi

i.-j

l1i*iiriiril;illyiffiiri:st',"
-' i:'' -- ",''.''"'

,i,i*fi{i i#iil llr. "; ;;iilstring varue,ittl+i
l..i s t,< s t r'i-n'g>, :.i.' i l e qat ob' L i t er = f I n
1 '1 ,pt iii:, out' .Uhe..vatue, tree ore and : af terr: lt:St?ou,s,t

"i:ii:ii-i4l$il5:;,i*.?i r*,;,1;;ifi*.:it; i t'-
return '0t

o,
utilotl OOP with C++ lntroduction to Standard .

)''

udng$ts*lr

b,,td;,

vector Cont4iner
aX.Ioiatbr> st

lerof.rvalues on tte, etack

:flek,:.$si ,.,4
r:e-iftr{r+t,> ji

ffitffij
i.).

;rae-k ,Ot,:,.s.,{rings
ide.que*$l.r.inqj"
ffilofl',$trSnSs

us,lng a deqqe
. alLocatos-): aai
on 'tfien',pop t^hem .of f

r1...: .,::.. lt ',..,-:':.:li

,i t*it. ,t.6'19'< ft l .
'**1**ffi* .. ' .

lil"
:'

ffi OOP with C++ lntroduction to Standard .

O"
utEt0tl

all$ro{>;iFffii

tI:!:
&.:$fidl;

,i1*t;;ii;
. fifi"ffi''1i.'il1.t i'iti' r-'''i-' i','', :.r' :."-" ".''''i'i''',r"''-" "

ExeRcrsEs
A. Review Questions

What is STL?
What is Container? List the three types of containers.
What is the major difference between sequence container and associative container?
What is an algorithm?
How are STL algorithms implemented?
What are the different types of algorithms?
What is an iterator? What are its characteristics?
Programming Exercise

Write a code segment that does the following:
i. Define a vector v1 with a maximum size of 10
iii. Sets the last element of vl to 10
v. Displays the contents of v1.
Write a program using countQ algorithm to count

ii. Sets the first element of vl to 1

iv. Sets the other elements to 1

the elements in a container having specified2.

3.

value.
Write a program using find0 algorithm to locate the position of a specified value in a

sequence container.

t'.',
2;',

,.,. 'i i'i--:.rrCCIllCotidn d,Ou'estionS'as.ked-in,Previous,E1qfts FU-.,,.. ,,: ,:, ',
r,',:-.. ,.,:

, i,r1lrrite,,s,hort :note o,n Standard Template Libiary. . :, r ,., . '-,, ,, 0j11i 4
''i'.'1V.hatis.fneea'ro1l1tefa'fo'rs?'.Whatis.their.rotb'.'lnsr't..''i...'.'l'..'..''::].l''.''i]:.'.'to'pt;:20i;i'l]FM

Lr@

ur3ffii

l. Introduction
Namespaces are a relatively new C++ feature just now starting to appear in C++ compilers.

Namespaces allow us to group a set of global classes, objects and/or functions under a name. To say
it another way, they serve to split the global scope in sub-scopes known as namespaces. The best
example of namespace scope is the C++ Standard Library.

All classes, funitions and templates are declared within the namespace named std. That is why
we have been using the directive,

using namespace std;
in our program that uses the standard library. The using namespace statement specifies that the

members defined in s/d namespace will be used frequently throughout the program.

What's a namespace, really?

It is a feature in C++ used to minimize name collisions (of variables, types, classes or functions)
without some of the restrictions imposed by the use of classes, and without the inconvenience of
handling nested classes in the global name space.

This namespace keyword assigns a distiirct name to a library that allows other libraries to use the
same identifier names without creating any name collisions (i.e., two things with the same name).

Furthermore, the compiler uses the namespace signature for differentiating the definitions. The
larger the program the more useful this idea is, especially if you use libraries written by other people.

14r1
o,

utSt0tl

OOP with C++ Namespace
Or

ut$0rl

2. Defining a Namespace
Defining a namespace is similar to defining a class. Flrsl goes the namespace keyword, followed

by the identifier (the namespace name), followed by member declarations enclosed in braces.

Syntax
j r^^+. fierrldtLtgDPquE ruvrlLr

{ / / declared or defined entities
/ / /rlaal:r:tirra raainn\ l

\vvvlq! LvY'v..t t

where, the namespace keyword is used in order to uniquely identify a namespace, identifier is any

valid identifier and within the declarative region, functions, variables, structs, classes and even
(nested) namespaces can be defined or declared.

For example
^^ ii e^^+lldltie-Paug q!! ss u

{ class Arrow
{ publrc:

Arrow(int dir);
vold setDirection(int dir) ;
nr r 17: I a .

lnt oj-recEron; j
/ / other stuff)

Namespaces cannot be defined within a block. So it is not possible to define a namespace within,

for example: a function. A namespace, however, cannot have access specifiers, such as public: or
private:. All members of a namespace are public. It cannot have a trailing semicolon, either. An
important difference between classes and namespaces, is that class definitions are said to be closed,

meaning that, once defined, new members cannot be added to it. A namespace definition is open, and

can be split over several units. Frr example
// rr_Le 5Y.n
namespace SY { c}ass Maker { ... I;

class SuperMaker : public Maker { ... }; }

/ / fil-e data.h
namespace SY { class Binder { ... };

class DataBj-nder : public Binder { ... };}
In this example, there are two files (SY.h and data.h), both defiuing namespace SY. The

definition of SY on data.h does not conflict with the one in SY.h, but actually extends it. If you look
closely at the Standard Library, you'll notice that no single header file declares all members of
namespace std. Each file only declares some members, adding them to the global std namespace.

2.1 Referring to Members of a Namespace

Given a namespace and members that are defined or declared in it, the scope resolution operator

can be used to refer to the members that are defined in that namespace'

Syntax

For example: namespace sY
{ vold jO };
ev..i/\.e!..) \ | ,

O.
utSt0tl AOP with C++ Namespace

In this example, the scope resolution operator provides access to the function j held within
namespace SY. The scope resolution operator : : is used to access identifiers in both global and local
namespaces. Any identifier in an application can be accessed with sufficient qualification. This is a
rather cumbersome way to refer to the j t) function in the SY namespace, especially so if the
function is frequently used.

However in such cases, we can use a using statement to simplify their access. The using statement
has two forms: using directive and using declaration.

i. Using Directive: A using directive provides access to all namespace qualifiers and the scope
operator. This is accomplished by applying the using keyword to a namespace identifier.
Syntax

usJ-ng names aa n^ma.

The name specifies the name of the namespace you want to access. All of the members
defined within the specified namespace are brought into view (i.e., they become part of the
current namespace) and may be used without qualification. For example

t-fl
ItJl&

include<iostream>
namespace flrst { int var = 5; }
namespace second { double var : 3,14L6; }int main ()
{ using namespace second; //aI]- members are visible of second

cout << var << endli
cout << (var*2) << endl;
return 0;

j
irtlg

0utput
3.1416
6.2832

In this case we have been able to use var without having to precede with any scope operator.

ii. Using Declaration: A using declaration provides access to a specific namespace member.
This is accomplished by applying the using keyword to a namespace name with its
corresponding namespace member.

Syntax

us1n9 namespace: :member,

For the declaration to work, the member must be declared inside the given namespace.
For example

n:maqn:^a A I.inf, ,.. _ I i
t hi v.

void f;
vold g;]

using A::k // onLy a specj-f ic member (i.e., K) is visible

OOP with C++ Namespace
o"

ut8t0tl

In this example, the using declaration is followed by A, it is the name of namespace, which is

then followed by the scope operator (: :), and k. This format allows k to be accessed outside

of namespace A through a using declaration. After issuing a using declaration, any extension

made to that specific namespace will not be known at the point at which the using declaration

occufs.

2,2 Difference betyveen using declaration and using directive
lOct.2011 - 5/t4l

A namespace is a scope in which declarations and definitions are grouped together. In order to

refer to any of these from another scope, a full qualified name is required. However, repeating the

full qualified name over and over again is tedious, error prone and less readable. Instead, a using

declaration or a using directive can be used.

The standard namesPace3.
Many entities of the runtime available software (For example: cout, cin, cerr, string and templates

defined in Standard Template Library) are now defined in std namespace. There are various ways to

access things inside std namespace which are:

i. Explicit access: Explicitly mention the namespace each time you use a facility.

Itr,.ji ii riiii::

A using directive is a sequence consisting of the
keyword using,

A using declaration is a sequence consisting of the
keyword using followed by a namespace::
member.

A using directive instructs the compiler to
recognize all members of a namespace and not
just one.

It instructs the compiler to locate every occurrence
of a certain declaration (type, operator, function,
etc.) in the specified namespace, as if the full
qualified name were supplied.

General Syntax: using namespacename ;GeneralSyntax: using
name spacename : : memberof namespace ;

#include <vector> / /STL vector;
belong to namespace std
#incl-ude <iostream> //iostream
classes and operators are also j-n
n:maenano cl-rl

void main ()

{

usj-ng namespace std;
//diree.tive: all <iostream> and

<vecLor> declarations now accessible
vector <int> vi;
.-i -..^L L^^1. /1n\ .vt.PuDrr_pau^\ru/ |

cout<<vi, begin O ;
l

#include <vector> / /SIL vector;
belongs to namespace std
void main ()

t
,,^i-^ -ri..r'a^f ^r. / /ttcinaU>Ilt9 -Lu. . vEuuul | / / soLILY

declaration; every occurrence of
vector is l-ooked uP in std
vector <int> vi; / /without a using
decl-aration, a fu11 qualified name:
std: :vector<int> wouLd be required

l//end of main; the above using
.ta^lrrifinn caaq nrr1- of sconc hererr Yve,

o"
utiloi OOP with C++ Namespace

n.

/ / opLion L

inc Iude< iostream>
int main O { std: : cout << "HeI}o, world l " << std: : endl;

Here, cout and the manipulator endl arc explicitly qualified by their namespace. That is to
write to standard output, you must specify std::cout and the endl manipulator must be referred
to as std::endl. But if your program uses hundreds of references to library names, then
qualifying each name individually is not possible.

Using statement: If you are using only a few names from the standard library, it may make
more sense to specify a using statement for each individually. The advantage of this approach
is that you can still use those names without std:: qualification, but you will not be bringing
the entire standard library into the global namespace.

For example: Consider the following program:

/ / apLion 2
inc lude< ios tream>
trqina <ial ..^nttl- .

vvqut

using std::endl;
int main ()

{ cout << I'Hel1o, worldlrt << endl;
l

Here, cout and endl may be used directly, but the rest of the std namespace has not
brought into view.

The using namespace statement: You can use "using namespace std" statement in the source
code file that references the namespace and this will make the standard library facilities
available throughout the program. For example

lTti
tL.__il

E

/ / OpLion 3
#incl-ude<iostream>
using namespace std;
int main ()

{ cout << "Hello, worldlr' << endl;
)

In the above program, we use the "using namespace std" statement in the source code because
of that the std namespace is brought into the current namespace, which gives you direct access
to the names of the functions and classes defined within the library without having to qualify
each one with std::. But we can use this approach only for smaller teaching programs.
However, it does make globally visible a lot of function and variable names that you're

ILII:
been

l|],

probably not going to use. For example: We use a graphics include file that defines a value

RED. Unfortunately RED is also defined in the std narnespace, thus causing a potential name-

clash when a globai "using nirmespace std" is used. For big programs it's probably better not to

use this oPtion.

Note that the original C++ library was defined in the global namespace. If you will be converting

older C++ programs, then you will need to either include a using namespace std statement or qualify

each reference to a library member with std::. This is especially important if you are replacing old .h

header files with the new-style headers. Remember, the old .h headers put their contents into the std

namespace.

4. Nested NamesPace
We can define one namespace into another. This is called nesting of

namespace. Consider the following example:

namespace first
{ namesPace Second

{ void *Pointer; } i

Now the variable pointer is defined in the Second namespace, nested

under the First namespace. In order to refer to this variable (i.e., pointer), the following options are

available:

i. The fully qualified name can be used. A fully qualified name of a1 gntllV is a list of all the

n*rpu.", that are visited until the definition of the entity is reached, glued together by the

scope resolution oPerator:

int main ()

{ First::Second::Pointer : 0; }

ii. A using declaration for First::Second can be used. Now Second canbe used without any

prefix, bat pointer must be used with the Second:: prefix:

r.riinq First::secondi
int main ()

{ Second::Pointer = 0; }

iii. A using declaration fot First::Second::pointer can be used. Now pointer can be used without

any prefix:

;;i"g First : : Second: :poi-nter;
int main ()

{ pointer = 0; i

iv. A using directive can be used:

using namesPace First: : Second;
int main ()

{ Pointer = 0; i

O"
ut$0tl Namespace

v. Alternatively, two separate using directives could have been used:
..:
using namespace First;
using namespace Second;
int main ()

{ Pointer : 0; }

vi. A combination of using declarations and using directives can be used. for example: A using
directive can be used for the First namespace, and a using declaration can be used for the
S e c ond : : p o int e r v ariable:
..:
using namespace First;
rrqina Qcnnnd ..nninf ar.

int main ()
{ pointer = 0; }

At every using directive all entities of that namespace can be used without any further prefix. If a
namespace is nested, then that namespace can also be used without any further prefix. However, the
entities defined in the nested namespace still need the nested namespace's name. Only by using a
using declaration or directive the qualified name of the nested namespace can be omitted. Consider
the following program illustrating the working of nested namespace:

a]E

#include<iostream>
using namespace std;
namespace Namel
{ double i;

namespace Name2
{ //Nesting namespace

double j;))

int main ()
{ Namel: : i:20.5

Name2::j:30.5 // gives error, Name2 is not in view
NameL::Name2::j:30.5' // Using fully qualified name
cout << 't= " << Namel-: : i<< '\n "
cout << 'J: " ((Namel: :Name2: : j<< '\n ";
using namespace Namel;
/ /Bring Namel in view, so Name2 can be used to refer to j
cout << '1= " << i <<'\n;
cout << 'J: " ((Name2: : j << '\n "i
return 0;

)

OOP with C++

Output
i=20.5

j=30.5

i=20.5
j=30.5

o"
ffi oop tut, c** t 'v"t""p""" ul5t6''

5. Unnamed Namespace
A namespace with no identifier before an opening brace produces an

unnamed namespace or ononymous trcttnespace. Unnamed namespace

allows you to create unique identifiers that are known only within the

scope of a single file. That is, within the file that contains the unnamed

namespace, the members of that namespace may be used directly, without
qualifiiation. But outside the file, the identifiers are unknown. Here's the

format.
namespace
{ namespace-body; i

A left brace immediately follows the keyword namespace without an intervening name qualifier.

All members defined in namespace-body are in an unnamed namespace that is guaranteed to be

unique for each file. At link time, member names in one unnamed namespace do not conflict with

equivalent member names from other unnamed namespaces in separate file. Following example

demonstrates how unnamed namespaces are useful:

li=-1
tlJl=
inc lude<ios tream>
using namespace std;
namespace
{ ,/ /unnamed namespace

constinti=4;
int varlable;)

int maln ()

{ cout << i << end}i
variable = 100;
return 0;

/ / i in unnamed namespace
/ / variable j-n unnamed namespace

In the previous example, the unnamed namespace permits access to i and variable without using a

ucop" ,"iolution operator. The following example illustrates an improper use of unnamed

namespaces'

F--ilILJIx

#include<iostream>
using namespace std;
namespace
{ const int i : 4; }
th+ .i

-
),!!LL L - - t

int maln ()

{ cout << r
-^+.'-n A.!gLu!14 vt

]

<< endl; // error

iF=ilILJI-=

O.
ut$0tl OOP with C++ Namespacr

Inside main, i causes an error because the compiler cannot distinguish between the global name
and the unnamed namespace member with the same na.me. In order for the previous example to
work, the rurmespace must be uniquely identified with an identifier and i must specify the namespace
it is using. You can extend an unnamed namespace within the same file. Forci^pi
tE:t

- # include<iostream>
using namespace std;
namespace { /,/unnamed namespace

int variable;
void funct(int); //prototype)

namespace I // same unnamed namespace
void funct(int i) { cout << i << endli })int main ()

{ funct (variable) ;
return 0;

- - Bolh the prototype and definition for funct are members of the same unnamed namespace.
Note: ltems defined in an unnamed namespace have internal linkage. Rather than using the keyword
static to define items with internal linkage, define them in an unnamed namespace instead.

6. Namespace Alias
We can declare alternate nitmes for existing namespaces according to the following format:

Syntax
namespace al_ias = namespace_name

Follow the keyword namcspace with your alias, i.e., (alias-namey. ,ar*tpac"_name mustbe a
name of the previously defined namespace. You can use more than one alias for the same namespace
qualifier, but you can't alias an existing alias. Aliases apply only to the translation unit or source
code file where they appear; the linker sees the original name. i.lamespace aliases are convenient
shorthand names and used when a namespace has a long name. For example
name space INTERNATIONAL_BUS INES S_MACHINES
{ void fO; }
namespace IBM : INTERNATIONAL_BUSINESS_MACHINES;

_ _ kt this example, the IBM identifier is an alias for INTERNAmONAL_BUSINESS_MACHINES.
Namespace aliases may appear in using directives, using declarations, and qualified nanresp:rce members.

Creating an Alias for a Nested Namespace
An alias can also be applied to a nested namespace. For emmple

namespace X { namespace y i class Z { }; } }
The full qualifier for Z isX:Y::2, but we can declare an alias using

namespace w = X::Y;
This declares w as an alias for namespace X::y, thus we can access Z using w i i z.

OOP with C++

1.

2.

ExeRcIsEs
A. Review Questions

How do we access the variables declared in a named namespace?

What is a namespace conflict? How is it handled in C++?

What is meant by unnamed namespace? Give the example illustrating the use of unnamed

namespace.

How can you create alias for nested namespace?

Exercises

1. Define a namespace named Constants that contains declarations of some constants. Write a
program that uses the constants defined in the namespace Constants'

2. Identify the error in the following program.

#include<iostream. h>
namespaceA { inti;

void display ()
{ cout << i;}}

void main ()
{ namesPace Inside { int insidel;

void displnsidel O {

cout << i-nsidel;]]
n'.f-rw,

cout << A::I;
A::displ O ;
Inside::i-nsidel=20;
cout<<Inside : : insidel ;
Inside: :disPlnsideIO ;)

ilr

Or
ut$l0ll

le Cqsts And RTTI

l. Introduction
To support modern, object-oriented programming Standard C++ contains two features: Run-Time

Type Identification (RTTD and a New-Style Casts (a set of four additional casting operators:
dynamic-cast, const-cast, static-cast and reinterpret*cast). These two features were not thl part of
the original specification for C++ but both were added later to provide enhanced suppolt for run-time
polymorphism. RTTI allows us to identify the type of an object during the execution of the program
and the casting operators give us a safer and more controlled ways to cast.

Why Cast?

Casts are used to convert the type of an object, expression, function argument, or return vBlue to
that of another type. Some conversions are performed automatically by the compiler without
intervention by the progafirmer. These conversions are called implicit conversions. The standard
C++ conversions and user-defined conversions are performed implicitly by the compiler where
needed. Other conversions which must be explicitly specified by the programmer and are
appropriately called explicit conversions. When a type is needed for an expression that cannot be
obtained through an implicit conversion or when more than one standard conversion creates an
ambiguous situation, the programmer must explicitly specify the target type of the conversion.

In C, an expression, expr, of type S can be cast to another type T in one of the following ways. By
using an explicit cast:

(T)expr

tre o"
eE|oiOOP with C++ New Style Casts and RTTI

or by using a functional form:
T (expr)

We will refer to either of these constructs as the ol.d C'style casts.

The old C-style casts have several shortcomings. First, the syntax is the same for every casting

operation. This means it is impossible for the compiler (or users) to tell the intended purpose of the

cast. Is it a cast from a base class pointer to a derived class pointer? Does the cast remove the "const-

ness" of the object? Or, is it a conversion of one type to a completely unrelated type? The truth is, it
is impossible to tell from the syntax. As a result, this makes the cast harder to comprehend, not only

by humans, but also by compilers which are unable to detect improper casts. Another problem is that

the C-style casts are hard to find. Parenthesis with an identifier between them are used all over C++

progrirms. There is no easy way to "grep" a source file and get a list of all the casts being performed.

Perhaps the most serious problem with the old C-style cast is that it allows you to cast practically any

type to any other type. Improper use of casts can lead to disastrous results. The old C-style casts have

created a few holes in the C type system and have also been a source of confusion for both

pro$iilnmers and compilers. Even in C++, the old C-style casts are letained for backwards

compatibility. However, using the new C++ style casting operators will make your programs more

readable, less error-prone and type-safe, and easier to maintain.

2. New-Style Casts
The new C++ casting operators are intended to provide a solution to the

shortcomings of the old C-style casts by providing:

i. Improved syntax: Casts have a clear, concise, although somewhat

cumbersome syntax. This makes casts easier to understand, find,
and maintain.

ii. Improved semantics: The intended meaning of a cast is no longer ambiguous. Knowing what

the programmer intended the cast to do makes it possible for compilers to detect improper

casting operations.

iii. Type-safg conversions allow some casts to be performed safely at run-time. This will enable

programmers to check whether a particular cast is successful or not.

C++ introduces four new casting operators:

a. static-cast, to convert one type to another type;

b. dynamic-cast, for safe navigation of an inheritance hierarchy; and

c. ggi6f-caStl to cast away the "gonst-ness" or "volatile-ness" of a type;

d. reinterpret-cast, to performtype conversions on un-related types.

Note: Use const_cast and reinterpret-cast as a last resort, since these operators present the same

dangers as old style casts. However, they are still necessary in order to completely replace old

style casts.

Let us see these cast operators one by one.

o,
utdoi OOPwith C++ NewStyle Casts and RTTI

3. Static_cast
A static-cast is used for all conversions that are well-defined. These include "safe" conversions

that the compiler would allow you to do without a cast and less-safe conversions that are however
well-defined. The types of conversions covered by static-cast include typical castless conversions,
forcing a conversion from a void* and implicit type conversions, converting between related types,
such as numeric types, etc.

The static_cast operator has the following syntax:
stat ic_cast<Type> (expres sion)

The static_cast operator converts a given expression to a specified type.
For example.' The expression static-cast<T>(v) converts the value of the expression v to that of

type T.It can be used for any cast that is performed implicitly on assignment. In addition, any value
may be cast to void, and any implicit cast can be reversed if that cast would be legal as an oid-style
cast.

FR
ILII_

- Program the use _cast operator
include< ios tream>
using namespace std;
ih|

--i-/\
|lrrL rrrallt\/ 1

int a = 53,
intb=2;
float d = a/b;
float m : static_cast<float> (a) /b;
cout << ild = tr << d << endl;
cout << trp = n << m << endl;

)

Output
d=26
d=26.5
In this example, d = a/b; produces an answer of type int because both a and, b are integers.

Conversely, m = static-cast<float>(a)/b; ptoduces an answer of type float. The static-cast operator
converts variable a to a typ float. This allows the compiler to generate a division with an answer of
typefloat. All static-cast operators resolve at compile time and do not remove any const or volatile
modifiers.

Applying the static-cast operator to a null pointer will convert it to a null pointer value of the
targettype. Youcanexplicitlyconvertapointerof atypeAtoapointerof atypeeif aisabaseclass
of e. If a is not a base class of e, a compiler enor will result. You may cast an lvalue of a type A to a
type B& if the following are true:

i. A is a base class of B.

ii. You are able to convert a pointer of type A to a pointer of type B.
iii. The type B has the same or greater const or volatile qualifiers than type A.

OOP with C++ New Style Casts and RTTI
o,

ut$0rl

iv. A is not a virtual base class of B.

v. The result is an lvalue of type B.

A pointer to member type can be explicitly converted into a different pointer to member type if
both types are pointers to members of the same Class. This form of explicit conversion may also take

place if the pointer to member types is from separate classes, however one of the class types must be

derived from the other.

4, Dynamic-cast
The dynamic_cast operator performs type conversions at run time. The dynamic-cast operator

converts the base class pointer to a derived class pointer. You can use dynamic-cast only when the

base class has at least one virtual pointer, i.e., it performs casts on polymorphic objects.

The dynamic-cast operator:

i. Makes downcasting much safer than conventional static casting.

ii. Obtains a pointer to an object of a"derived class that is given a pointer to a base class of that

object.

iii. Returns the pointer only if the specific derived class actually exists.

Note: If the specified derived class does not exist zero is returned.

Dynamic casts have the following Syntax:
dvnamic cast<t ame> (expressaon

The operator converts the expression to the desired type type-name. Tlte type-name can be a
pointer or a reference to a class type. If the cast to type-name fails, the value of the expression is

z,ero. For example:The expression dynamic-cast<T>(v) converts the expression v to typeT.

Type 7 must be a pointer or reference to a complete class type or a pointer to void. If 7 is a
pointei and the dynamic-cast operator fails, the operator returns a null pointer of type T.lf T is a
ieference and the dynamic-ca,r/ operator fails, the operator throws the exception std::bad'-c4st. You

can find this class in the standard library header <typeinfo>.

The primary purpose for the dynamic-cast operator is to perform type-safe downcasts. A
downcast is the conversion of a pointer or reference to a class A (base class) to pointer or reference

to a class B (derived class), where class A is a base class of L The problem with downcasts is that a

pointer of type A* can and must point fo any object of a class that has been derived from A.

The dynamic_cast operator ensures that if you convert a pointer of class A to a pointer of a class

B, the object thatA points to belongs to class B or a class derived from B.

m-
= Program the use of dynamlc-cast oPerator
#include<iostream>
using namespace std;
class B

{ public:
vi-rtuaI void func ()
{ cout << trlnside class Base \n" i }

o"
urt!0tl OOP wlth C++ New Style Casts and BTTI

ti
class D: public B

{ publ1c:
void func ()
{ cout << I'Inside derived cLass \n"; }

T;
int. main ()
J P *Lrn Lr nh'i.I v uy, p_vuJl

D *dp, d-obj;
dp : dynamic_cast<D*> (&d_obj);
if (dp)
{ cout<<"Cast from derived class* to derived class*\n";

dp -+ func0;)
e1 se
i cout<<ttError \ntt;)

bp = dynamic _cast<B*>(&d_obj);
i-f (bp)
{ cout<<r'Cast from derived* to base* \n"I

bp+func O ;)
else

cout<<ttError \ntt;
bp = dynamic-cast<B*> (&b-obj);
if (bp)
{ cout<<r'Cast from base* to base*\n";

bp+func O ;)

else
cout<<ttError \ntt I
dp : dynamic-cast(D*) (&b_obj),
if (dp)
{ cout<<rrError \n rr ; }

else
{ cout<<rrCast from base* to derived* not possible. \nt';

bp : cd-obj; / /bp points to derived obj .

dp = dynamic-castcD*> (bp);
if (dp)

{ cout<<'rCasting bp to a derived possible as"
<<"bp is pointing to a derived object. \n";

dp+func ())
efse

cout<<rtError \ntt i
bp = cb-obj;
dp : dynami-c-cast<D*> (bp);
if (dp)
cout<<?tErrorrr;

else
cout<<r'Casting bp to a derived not possible asrr

<<"bp is pointing to a Base Object. \n";
dP : &d-obj;
bp = dynamic_cast<B*> (dp);

if (bp)
{ cout<<rtCasting dp to a base* \n";

bp+func ())

ffi OOPwith C++ New Style Casts and RTTI
Or

utft0tl

else
cout<<nError \nrt;
rof rrrn O r

Output
Cast from derived class *to derived class*

Inside derived class

Cast from Derived *to base*

Inside derived class

Cast from base* to base*

lnside class Base

Cast from base* to derived* not possible.

Casting bp to a derived possible as bp is pointing to a derived object

Inside derived class

Casting bp to a derived not possible as bp is pointing to a Base object.

Casting dp to a base*

Inside derived class.

5. Const_Cast
A const-cast operator is used to add or remove a const or volatile modifier to or from a type.

This is the only conversion allowed with const-cast; if any other conversion is involved it must
be done separately or you'll get a compile-time error. Remember also that while const_cast may
remove the const qualifier of an object, this doesn't mean that you're allowed to modify it. In fact,
trying to modify a const object causes undefined behavior. Therefore, use const-cast cautiously
when it is used for the removal of const or volatile.

Syntax

Type and the type of expression may only differ with respect to their const and volatile
qualifiers. Their cast is resolved at compile time. A single const_cast expression may add or remove
any number of const or volatile modifiers. The result of a const-cast expression is an rvalue unless
Type is a reference type. In this case, the result is an lvalue. Types cannot be defined within
const_cast.

s Program demonstratlng tho uso of const_cast operator
#includeciostream>
using namespace std;
vold f(int* p) {

cout << *p << endl;)
int main (vold) t

Or
s3t0tl OOP with C++ New SUle Casts and RTTI

constinta=10;
constint*b:&a;
// Eunction fO expects j-nt*, not const int*// r(b);

int* c = const_castcint>(b);
f(c);

/ / Lvalue is const
// *b = 20;

/ / Undeftned behavior
// *c = 3o;
int a1 = 40i

const int* b1 - &a1;
int* cL = const_cast.<int> (b1) ;

/ /InLeger aL, the object referred to by c1", has not been declared
/ / consL

vf
- Jv,

raf rrrn O.
-vesrf. vt

) m
-

The compiler will not allow the function call f (b). Function f () expects a pointer to an int, not
a coINil int. The statement int* c = const-cast<int>(b) retums apointer c that refers to a
without the const qualification of a. This process of using const-cast to remove the const
qualification of an object is called casting away constness. Conseguently the compiler will allow the
functioncallf(c).

The compiler would not allow the assignmont *b : 20 because n points to an object of type
const int. The compiler will allow the *c = 30, but the behavior of this statement is undefined. If
you cast away the constness of an object that has been explicitly declared as const, and attempt to
modify it, the results are undefined.

However, if you cast away the constness of an object that has not been explicitly declared as

const, you can modify it safely. In the above example, the object referred to by nr has not been
declared const, but you cannot modify this object through nr.

You may cast away the constness of lt and modify the value to which it refers.

6. Reinterpret_cast
A reinterpret-cast operator handles conversions between unrelated types. This is the least safe of

the casting mechanism and the one most likely to point to bugs. At the very least, your compiler
should contain switches to allow you to force the use of const_cast and reinterpret_cast, which will
locate the most unsafe of the casts.

Syntax

reinterpret_cas t<Type> (expres s 1on)

ffi OOP with C++ New Style Casts and RTTI
Q.

ut$0i

The reinterpret-cast operator produces a value of a new type that has the same bit pattern as its

argument. reinterpret_cast cannot be used to convert between pointers to two different classes that

are related by inheritance (use static-cast or dynamic-cast), nor can it be used to cast away const or

volatile qualification (use const-cast).

You can explicitly perform the following conversions:

i. A pointer to any integral type large enough to hold it

ii. A value of integral or enumeration type to a pointer

iii. A pointer to a function to a pointer to a function of a different type

iv. A pointer to an object to a pointer to an object of a different type

v. A pointer to a member to a pointer to a member of a different class or type, if the types of the

members are both function types or object types

vi. A null pointer value is converted to the null pointer value of the destination type. In the

following example, reinterpret_cast is used to "cheat" the compiler, enabling the programmer

to examine the individual bytes of a float variable:

float f:10;
unsigned char *p = reinterpret-castcunsigned char*> (cf);
€^-/i^+ i-n. 4zA. rr.i\!v! \lrrL J-v, -l-=i ++j)

cout<<pljl<<endli

The use of reinterpret-cast explicitly warns the reader that an unsafe (and probably a nonportable)

conversion is taking place. When using reinterpret-cast, the programmer rather than the compiler is

responsible for the results.

fm,& Program demonstratlng the use of relnterpret_cast operator
#include<iostream>
using namespace std;
int main ()

{ int i;
al-rrr *n: rlThie iq : qtrincrl:

f

i : reinterpret-cast<int> (p);
cout << 1;
return 0;

i

/ / ^^ af nainlar fa in{-aaar/ / gqDl PVfrrus! uv lrrLsYsl

f:jl
IL_JI

-
0utput

7648

O"
urilo; OOP with C++ New Style Casts and BTTI

7. Run-Time Type Information (RTTI)
Run-Time Type Information (RTTI) is a major extension to the C++

language made by the ISO standard committ,ee. Run-Time Type
Information (RffI) is a mechanism that allows the type of an object to be

determined during pro$am execution. RTTI was added to the C++
language because many vendors of class libraries were implementing this
functionality themselves. This caused incompatibilities between libraries.
Thus, it became obvious that support for run-time type information was

needed at the language level. There are three mnin C++ language

elements to run-time type information:

i. The dynamic-cast operator : We have already seen that the
dynamic cast operator used for conversion of polymorphic types.
This operator combines type-checking and casting in one operation.
It checks whether the requested cast is valid, and performs the cast only if it is valid.

The typeid operator: This operator retums the run-time type of an object, i.e., it is used for
identifying the exact type of an object. If the operand provided to the typeid operator is the
name of a type, the operator returns a type-info object that identifies it. If the operand
provided is an expression, typeid retums the type of the object that the expression denotes.

The type_info class : This class describes the RTTI available, and is used to define the type
information returned by the typeid operator. This class provides to users the possibility of
shaping and extending RTTI to suit their own needs. This ability is of most interest to
implementers of object VO systems such as debuggers or database systems.

7.1 The typeid Operator
The Lypeid operator provides a program with the ability to retrieve the actual derived type of the

object referred to by a pointer or a reference. This operator, along with the dynamic_cast operator,

are provided for RTTI support in C++.

Syntax
irrnairl/l-rrna-irl\

\ uJFv f g/

typeid (expr)

The typeid operator requires RTTI to be generated, which must be explicitly specified at compile
time through a compiler option.

The result of typeid operator is const std::type_info or const type_info & that represents the

type of expression expr. You must include the standard template library header <typeinfo> to use the

typeid operator.

tl.

ln.

ffiry Or
ut$0tlOOP with C++ New Style Casts and BTTI

If expr is a reference or a dereferenced pointer to a polymorphic class, typeid will return a
type_info object that represents the object that the reference or pointer denotes at run time. If it is not
a polymorphic class, typeid will return a type_info object that represents the type of the reference or
dereferenced pointer. The following example demonshates this:

#incl-ude<iostream>
#incl-ude<typelnf o>
using namespace std;
struct A { virtual -AO { } };
<f rrrnl- P . A I l.t t,
struct C { };
cf rrrnt- fl . C I 1.v I)f
i *r --l - / \ tfrrL rilarrrt, 1

R].rnl-rionf .
P PvNJvvv I

A* aP = &bobject;
A& ar = bobject;
cout << "ap: " << typeid(*ap).name()
cout << rrar : " << typeid (ar) . name ()
f'l rin}. ianf '

C* cP = &dobject;
C& cr = dobject;
cout << rrcp: " << typeid (*cp) . name ()
cout << rrcr : t' << typeid (cr) . name ()

l

<< endl;
<< endl;

<< endl;
<< endl;

Output
ap: B

ar: B

cp: c
cr: c
Classes A and ^B are polymorphic; classes C and D are not. Although cp and cr refer to an object

of type D, typeid(*cp) and typeid(cr) rcturn objects that represent class C. lvalue-to-rvalue, array-to-
pointer, and function-to-pointer conversions will not be applied to expr. For example: The output of
thefollowing example will be i-nt [10], not int *:

incl-ude<ios tream>
inc lude<type info>
using namespace std;
int main O {

1nt myArray[10];
cout << typeid(myArray).nameO << endli

)

If expr is a class type, that class must be completely defined.

The typeid operator ignores top-level const or volatile qualifiers.

()"
ut$0rl OOP with C++ New Style Casts and RTTI

7.2 The type_info Class
The class type_info describes type information genera0ed by the

functions provided by type_info are equality, inequality, before and
definition is:
class type_info
{ public:

vj-rtuaI -t.ype_info () ;
bool operator::(const type_info erhs) const;
bool operator!:(const type_info &rhs) const;
trnn l lrcf nra /r.onqi j- rrna i nfn c'rhc \ ^^ncf

.r v \ vvrre e e-)'}/e_rrrrv q! lru / uvrrr u,

const char *nameO const;
private:
type_info(const type_1nfo &rhs) ;
type_info &operator=(const type_info crhs) ;);

The overloaded == an{ != provide for the comparison of types. The before0 function return true
if the invoking object used as parameter in collation order. This function is mostly for internal use
only. Its return value has nothing to do with inheritance or class hierarchies. The name$ function
returns a pointer to the name of the type. The constructor is a private member function, so there is no
way for a progratnmer to create a variable of type "type-info". The only source of "type_info"
objects is in the "typeid" operator.

8. A Simple Application of Run-Time Type lD
The following program hints at the power of RTTI. In the following program, the function

factory0 creates instances of various types of objects derived from the class Mammat. (A function
which produces objects is sometimes called an object factory.). The specific type of object created is
determined by the outcome of a call to rand0, C++'s random number generator. Thus, there is no
way to know in advance what type of object will be generated. The program creates 10 objects and
counts the number of each type of mammal. Since any type of mammal may be generated by a call to
factoryQ, the program relies upon typeid to determine which type of object has actually been made.

nT
l|Jl-s Program
inc lude< ios tream>
using namespace std;
nlaqq M:mmr'l J

public:
virtual bool lays_eggs ()
{ return false; } //ltammal is polymorphic

//.
j;
class Rat: public Mammali
public:

//. I;
class Platypus: public Mammal{
public:

bool lays_eggs O {return true; }

typeid operator. The primary
name. From <typeinfo.h>, the

OOP with C++ New Style Casts and RTTI
Or

ur$otl

// 1../ / .),
class Cat:public MammaI{
nrrl-r] i n.
I/qvr+v.

Il ' !,

/ / A f actorv fnr oh'ier:is c'lerived from Mammal-./ | aMvevrf

Malnmaf *f actory o
{ swiLch (rand () ?3) {

case 0: return new Cat;
case L: return new RaL;
case 2: reLurn new PlatyPusi]

return 0;)
int main ()
r nr^--- 1 *^+-,
1 !'taltLlltqI l./UL I

i nf i .
frru !t

/ / rai nf or in kraqa c l:ss//
r-r ^-n --n ^-n.f llL 9-V I L-w I Y-w,
/ / aanaral c :nd cnrrnf olliect.s/ / Yerie!

for (i=0; i<10t i++) i
ptr=factoryO t / /generaLe an object
cout<<"object is"<<typeid (*ptr) .name O ;
aattl z zarAl .

\9rr9f ,

,/ / count it
.if /t-rrnairl/*hfr\==f rrnoid(f-:f I Ir! \ u-lYvrv \ re& /

if (typeid (*ptr) =:typerd (nac))

if (typeid (*ptr) ::typeid (Platypus))

p++;)

cout<<endI;
cout<< "Animals generated: \nr' ;
couL<< trCats:rr << c << endl;
cout<< ttRats:tr << r << endli
cout<< "Platypus:rr << P << endl;
return 0;

)

Output
Object is class Platypus
Object is class Platypus
Object is class Rat
Object is class Rat
Object is class Platypus
Object is class Rat
Object is class Cat
Object is class Cat
Object is class Rat
Object is class Platypus
Animals generated:

Cats:2
Rats:4
Platypus:4

o,
utfl0rl OOP with C++ New Style Casts and RTTI

9. TYPEID can be applied to Template Classes
We can apply the typeid operator to templat,e classes. The type of an object that is an instance of a

template class is in part determined by what data is used for its generic data when the object is
instantiated. Two instances of the same template class that are created using different data are

therefore different types. Here is a example:

* Program: Uslng typeiduith templates
#include<iostream>
ttqi nd n^maehada..*...--r*-- scq;
template<c1ass T> class myclass{

public:
Myclass (T i-) {a:i;1
// I;

int main ()

{ myclass<int> objl (10), obj2 (8);
myclass<double> obj3 (8.3) ;
cout << "Type of obj1 is"i
cout << typeid (obj 1) . name () << endl;
cout << "Type of obj2 istti
cout << typeid(ob12).nameO << endl;
cout << "Type of obj3 is";
cout << typeid (ob j 3) . name O << end.l_;
cout (< endl;
i f ltrrnei d {nh'i l ,|::trrnoi ri 1nl-r"i2\ \+r \eJFv+v\vv)Lt -

uJIJvfq\vp)Lt I

cout<< "obj1 and obj2 are of the same type\n";
if (J. rrnaid1nl^r-i"l \::l-rrnaid/nl-ri?\ \+! \eJyvrv\vpJLt \vpJJt I

cout << trError\ntr;
el-se

cout << "obj1 and obj3 are of different types\n";
return 0;

]

0utput

Type of obj I is class myclasscint>

Type of obj2 is class myclasscin>
Type of obj3 is class myclasscdouble>

obj 1 and obj? ue of the same type

obj 1 and obj3 are different types

Note that even though two objects are of the same template class type, if their parameterized data
does not match, they are not equivalent types. In the above program, obj 1 is of type myclass<int>
and obj3 is of type myclasscdouble>. Thus, they are of different types.

im

OOPwith C++ New Style Casts and RTTI
o,

0||t0i

ExeRcrsEs
A. Review Questions

1.

2.

?

4.

5.

B.

List the new operators added by the ANSI C++ standmd committee.

What is the application of dynamic-cast operator?

How does the reinterpret-cast differ from the static-cast?

What is the dynamic casting? How is it achieved in C++?

What is typeid operator? When is it used?

Exercises

Write a program to demonstrate the use of dynamic-cast operator.

Write a program to demonstrate the use of typeid operator.

Use RTTI to assist in program debugging by printing out the exact name of a template using
typeid(). Instantiate the template for various types and see what the results are.

What is the problem with the following statements?

const int m:100;
doubl-e *ptr= const-cast<double*> (&m) ;

What will be the output of the following program?

incl-ude<iostream. h>
class person{ //. }
int main ()
{ person abc;

couL<<trabc is att I
cout<<typeid (abc) . name O (<"\n";)

1.

2.

3.

4.

).

Irrt
&a

3i

4.

o"
ur$t011

Suggestive Readings:

1. Krishna Mohan &MeeraBanerji. Developing Communication Skills; Macmillan

Publishers Ltd

2. Dr.K.Alex. Soft Skills; S.Chand Publishing

3. Swets, Paul. W. 1983. The Art of Talking So That People Will Listen: Getting

Through to Family, Friends and Business Associates. Prentice Hall Press. New York

4. Lewis, Norman. 1991. Word Power Made Easy. Pocket Books

5. Herbert Schildts : C++ - The Complete Reference, Tata McGraw Hill Publications.

6. Balaguru Swamy : C++, Tata McGraw Hill Publications.

7. Balaguruswamy : Object Oriented Programming and C++, TMH.

8. Shah & Thakker : Programming in C++, ISTE/EXCEL.

9. Johnston : C++ Programming Today, PHI.

10. Object Oriented Programming and C++, Rajaram, New Age International.

11. Samanta : Object Oriented Programming with C++ & JAVA, PHI.

	96a7a86a60f65d165d8f781525245815b7b9854ea70f5dbdc185c41c50cc3ad1.pdf
	ed1fe34f9e815c1067d390113db321db21a5d87e48f1ee052d767fd4521b225f.pdf
	e9c0f5091c6a66ebba539b015425de5a8729f4efbcccc6221749b515423565e9.pdf
	87628325da125cc4d822d52225031d3074641b9c0e70d47f10c30def7bf25a19.pdf
	Microsoft Word - Object Oriented Programming with C++ BCA SEM-4

